These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 32918721)

  • 1. Optimizing placement of constructed wetlands at landscape scale in order to reduce phosphorus losses.
    Djodjic F; Geranmayeh P; Markensten H
    Ambio; 2020 Nov; 49(11):1797-1807. PubMed ID: 32918721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost effectiveness of nutrient retention in constructed wetlands at a landscape level.
    Djodjic F; Geranmayeh P; Collentine D; Markensten H; Futter M
    J Environ Manage; 2022 Dec; 324():116325. PubMed ID: 36162315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annual study of hydraulic characteristics in surface flow constructed wetlands using hydrogen and oxygen stable isotope technology.
    Gao H; Lan W; Sun H; Hu Z
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29502-29511. PubMed ID: 32445146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of nutrients in various types of constructed wetlands.
    Vymazal J
    Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient removal of phosphorus from constructed wetlands using solidified lanthanum/aluminum amended attapulgite/biochar composite as a novel phosphorus filter.
    Yin H; Zhang M; Huo L; Yang P
    Sci Total Environ; 2022 Aug; 833():155233. PubMed ID: 35421471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle deposition, resuspension and phosphorus accumulation in small constructed wetlands.
    Geranmayeh P; Johannesson KM; Ulén B; Tonderski KS
    Ambio; 2018 Jan; 47(Suppl 1):134-145. PubMed ID: 29164538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands.
    Cui L; Ouyang Y; Yang W; Huang Z; Xu Q; Yu G
    J Environ Manage; 2015 Apr; 153():33-9. PubMed ID: 25646674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the efficiency and temporal variation of pilot-scale constructed wetlands and steel slag phosphorus removing filters for treating dairy wastewater.
    Lee MS; Drizo A; Rizzo DM; Druschel G; Hayden N; Twohig E
    Water Res; 2010 Jul; 44(14):4077-86. PubMed ID: 20566211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands.
    Yin H; Yan X; Gu X
    Water Res; 2017 May; 115():329-338. PubMed ID: 28288312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the substrate depth on purification performance of a hybrid constructed wetland treating domestic sewage.
    Ren YX; Zhang H; Wang C; Yang YZ; Qin Z; Ma Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(7):777-82. PubMed ID: 21644156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of high organic loads during the summer period on the performance of hybrid constructed wetlands (VSSF + HSSF) treating domestic wastewater in the Alps region.
    Foladori P; Ortigara AR; Ruaben J; Andreottola G
    Water Sci Technol; 2012; 65(5):890-7. PubMed ID: 22339024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clay particle retention in small constructed wetlands.
    Braskerud BC
    Water Res; 2003 Sep; 37(16):3793-802. PubMed ID: 12909097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling.
    Lyu T; Zhang L; Xu X; Arias CA; Brix H; Carvalho PN
    Environ Pollut; 2018 Feb; 233():71-80. PubMed ID: 29055837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tolerance to hydraulic and organic load fluctuations in constructed wetlands.
    Masi F; Martinuzzi N; Bresciani R; Giovannelli L; Conte G
    Water Sci Technol; 2007; 56(3):39-48. PubMed ID: 17802836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clogging development and hydraulic performance of the horizontal subsurface flow stormwater constructed wetlands: a laboratory study.
    Tang P; Yu B; Zhou Y; Zhang Y; Li J
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9210-9219. PubMed ID: 28220386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an innovative front aeration and internal recirculation strategy to improve the removal of pollutants in subsurface flow constructed wetlands.
    Lin CJ; Chyan JM; Zhuang WX; Vega FA; Mendoza RMO; Senoro DB; Shiu RF; Liao CH; Huang DJ
    J Environ Manage; 2020 Feb; 256():109873. PubMed ID: 31822455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The performance of constructed wetlands treating primary, secondary and dairy soiled water in Ireland (a review).
    Healy MG; O' Flynn CJ
    J Environ Manage; 2011 Oct; 92(10):2348-54. PubMed ID: 21665354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing adverse side effects by seasonally lowering nitrate removal in subsurface flow constructed wetlands.
    Carstensen MV; Larsen SE; Kjærgaard C; Hoffmann CC
    J Environ Manage; 2019 Jun; 240():190-197. PubMed ID: 30933823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L; Li Y; Biswas DK; Nian Y; Jiang G
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus removal by apatite in horizontal flow constructed wetlands for small communities: pilot and full-scale evidence.
    Harouiya N; Martin Rue S; Prost-Boucle S; Liénar A; Esser D; Molle P
    Water Sci Technol; 2011; 63(8):1629-37. PubMed ID: 21866761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.