These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32918781)

  • 1. Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice.
    Cao K; Skowron ST; Stoppiello CT; Biskupek J; Khlobystov AN; Kaiser U
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22922-22927. PubMed ID: 32918781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping of metal atoms in vacancies of carbon nanotubes and graphene.
    Rodríguez-Manzo JA; Cretu O; Banhart F
    ACS Nano; 2010 Jun; 4(6):3422-8. PubMed ID: 20499848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the atomic structure of carbon nanotubes by a focused electron beam: new morphologies at the sub-nanometer scale.
    Rodríguez-Manzo JA; Krasheninnikov AV; Banhart F
    Chemphyschem; 2012 Jul; 13(10):2596-600. PubMed ID: 22407751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediation.
    Zhao L; Ta HQ; Dianat A; Soni A; Fediai A; Yin W; Gemming T; Trzebicka B; Cuniberti G; Liu Z; Bachmatiuk A; Rummeli MH
    Nano Lett; 2017 Aug; 17(8):4725-4732. PubMed ID: 28691821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of single Fe atoms in graphene vacancies.
    Robertson AW; Montanari B; He K; Kim J; Allen CS; Wu YA; Olivier J; Neethling J; Harrison N; Kirkland AI; Warner JH
    Nano Lett; 2013 Apr; 13(4):1468-75. PubMed ID: 23517297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping of metal atoms in the defects on graphene.
    Tang Y; Yang Z; Dai X
    J Chem Phys; 2011 Dec; 135(22):224704. PubMed ID: 22168716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water at the Interface Between Defective Graphene and Cu or Pt (111) Surfaces.
    Ferrighi L; Perilli D; Selli D; Di Valentin C
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29932-29941. PubMed ID: 28795791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale.
    Zoberbier T; Chamberlain TW; Biskupek J; Kuganathan N; Eyhusen S; Bichoutskaia E; Kaiser U; Khlobystov AN
    J Am Chem Soc; 2012 Feb; 134(6):3073-9. PubMed ID: 22263637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation of graphene and its conversion to single-walled carbon nanotubes.
    Picher M; Lin PA; Gomez-Ballesteros JL; Balbuena PB; Sharma R
    Nano Lett; 2014 Nov; 14(11):6104-8. PubMed ID: 25329750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflating graphene with atomic scale blisters.
    Robertson AW; He K; Kirkland AI; Warner JH
    Nano Lett; 2014 Feb; 14(2):908-14. PubMed ID: 24422539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bonding of atomic phosphorus to polycyclic hydrocarbons and curved graphitic surfaces.
    Melchor S; Dobado JA; Larsson JA; Greer JC
    J Am Chem Soc; 2003 Feb; 125(8):2301-6. PubMed ID: 12590560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Interactions and Bonding between Carbon and Group VIII Metals at the Atomic Scale.
    Zoberbier T; Chamberlain TW; Biskupek J; Suyetin M; Majouga AG; Besley E; Kaiser U; Khlobystov AN
    Small; 2016 Mar; 12(12):1649-57. PubMed ID: 26848826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab Initio Investigation of the Adsorption of CO
    Wang C; Wang Z; Zhang S; Zhang J; Li K
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfiguring Organic Color Centers on the sp
    Qu H; Wu X; Fortner J; Kim M; Wang P; Wang Y
    ACS Nano; 2022 Feb; 16(2):2077-2087. PubMed ID: 35040631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Coupling of Two Atomic Defects in a Carbon Nanotube Semiconductor.
    Fortner J; Wang Y
    J Phys Chem Lett; 2022 Sep; 13(38):8908-8913. PubMed ID: 36126326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the bridging atom in stabilizing odd numbered graphene vacancies.
    Robertson AW; Lee GD; He K; Yoon E; Kirkland AI; Warner JH
    Nano Lett; 2014 Jul; 14(7):3972-80. PubMed ID: 24959991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Visualization of Atomic-Scale Graphene Growth on Cu through Environmental Transmission Electron Microscopy.
    Liu Y; Xu L; Zhang L; Dong Z; Wang S; Luo L
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):52201-52207. PubMed ID: 33147010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging.
    Cheung CL; Hafner JH; Lieber CM
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3809-13. PubMed ID: 10737761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Correlation of Carbon Nanotube Nucleation and Growth with the Atomic Structure of Rhenium Nanocatalysts Stimulated and Imaged by the Electron Beam.
    Cao K; Chamberlain TW; Biskupek J; Zoberbier T; Kaiser U; Khlobystov AN
    Nano Lett; 2018 Oct; 18(10):6334-6339. PubMed ID: 30185052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic structure and dynamics of metal dopant pairs in graphene.
    He Z; He K; Robertson AW; Kirkland AI; Kim D; Ihm J; Yoon E; Lee GD; Warner JH
    Nano Lett; 2014 Jul; 14(7):3766-72. PubMed ID: 24945707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.