BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32918948)

  • 1. Structural Features that Distinguish Inactive and Active PI3K Lipid Kinases.
    Zhang M; Jang H; Nussinov R
    J Mol Biol; 2020 Nov; 432(22):5849-5859. PubMed ID: 32918948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical and Structural Characterization of Novel RAS-Binding Domains (RBDs) of PI3Kα and PI3Kγ.
    Martinez NG; Thieker DF; Carey LM; Rasquinha JA; Kistler SK; Kuhlman BA; Campbell SL
    J Mol Biol; 2021 Apr; 433(8):166838. PubMed ID: 33539876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized HRas.
    Siempelkamp BD; Rathinaswamy MK; Jenkins ML; Burke JE
    J Biol Chem; 2017 Jul; 292(29):12256-12266. PubMed ID: 28515318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase alpha (PI3Kalpha ). Functions of lipid kinase-deficient PI3Kalpha in signaling.
    Pirola L; Zvelebil MJ; Bulgarelli-Leva G; Van Obberghen E; Waterfield MD; Wymann MP
    J Biol Chem; 2001 Jun; 276(24):21544-54. PubMed ID: 11278889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural basis for Ras activation of PI3Kα lipid kinase.
    Zhang M; Jang H; Nussinov R
    Phys Chem Chem Phys; 2019 Jun; 21(22):12021-12028. PubMed ID: 31135801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and structural analyses reveal residues in phosphoinositide 3-kinase α that are critical for catalysis and substrate recognition.
    Maheshwari S; Miller MS; O'Meally R; Cole RN; Amzel LM; Gabelli SB
    J Biol Chem; 2017 Aug; 292(33):13541-13550. PubMed ID: 28676499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA).
    Burke JE; Perisic O; Masson GR; Vadas O; Williams RL
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15259-64. PubMed ID: 22949682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calmodulin (CaM) Activates PI3Kα by Targeting the "Soft" CaM-Binding Motifs in Both the nSH2 and cSH2 Domains of p85α.
    Zhang M; Li Z; Wang G; Jang H; Sacks DB; Zhang J; Gaponenko V; Nussinov R
    J Phys Chem B; 2018 Dec; 122(49):11137-11146. PubMed ID: 30047727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylated Calmodulin Promotes PI3K Activation by Binding to the SH
    Zhang M; Jang H; Gaponenko V; Nussinov R
    Biophys J; 2017 Nov; 113(9):1956-1967. PubMed ID: 29117520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases.
    Dornan GL; Burke JE
    Front Immunol; 2018; 9():575. PubMed ID: 29616047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the mechanism of allosteric activation of PI3Kα by oncoprotein K-Ras4B.
    Li X; Dai J; Ni D; He X; Zhang H; Zhang J; Fu Q; Liu Y; Lu S
    Int J Biol Macromol; 2020 Feb; 144():643-655. PubMed ID: 31816384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases.
    Hon WC; Berndt A; Williams RL
    Oncogene; 2012 Aug; 31(32):3655-66. PubMed ID: 22120714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in
    Dornan GL; Siempelkamp BD; Jenkins ML; Vadas O; Lucas CL; Burke JE
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1982-1987. PubMed ID: 28167755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining How Oncogenic and Developmental Mutations of PIK3R1 Alter the Regulation of Class IA Phosphoinositide 3-Kinases.
    Dornan GL; Stariha JTB; Rathinaswamy MK; Powell CJ; Boulanger MJ; Burke JE
    Structure; 2020 Feb; 28(2):145-156.e5. PubMed ID: 31831213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases.
    Vadas O; Burke JE; Zhang X; Berndt A; Williams RL
    Sci Signal; 2011 Oct; 4(195):re2. PubMed ID: 22009150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM structures of cancer-specific helical and kinase domain mutations of PI3Kα.
    Liu X; Zhou Q; Hart JR; Xu Y; Yang S; Yang D; Vogt PK; Wang MW
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2215621119. PubMed ID: 36343266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the activation mechanism of phosphoinositide 3-kinase alpha.
    Jani V; Sonavane U; Sawant S
    Comput Biol Chem; 2024 Feb; 108():107994. PubMed ID: 38043374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma.
    Pacold ME; Suire S; Perisic O; Lara-Gonzalez S; Davis CT; Walker EH; Hawkins PT; Stephens L; Eccleston JF; Williams RL
    Cell; 2000 Dec; 103(6):931-43. PubMed ID: 11136978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural comparisons of class I phosphoinositide 3-kinases.
    Amzel LM; Huang CH; Mandelker D; Lengauer C; Gabelli SB; Vogelstein B
    Nat Rev Cancer; 2008 Sep; 8(9):665-9. PubMed ID: 18633356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric Activation of PI3Kα Results in Dynamic Access to Catalytically Competent Conformations.
    Chakrabarti M; Gabelli SB; Amzel LM
    Structure; 2020 Apr; 28(4):465-474.e5. PubMed ID: 32049032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.