BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32919193)

  • 1. Performance and kinetics of benzo(a)pyrene biodegradation in contaminated water and soil and improvement of soil properties by biosurfactant amendment.
    Guo J; Wen X
    Ecotoxicol Environ Saf; 2021 Jan; 207():111292. PubMed ID: 32919193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycyclic aromatic hydrocarbons remobilization from contaminated porous media by (bio)surfactants washing.
    Cazals F; Colombano S; Huguenot D; Betelu S; Galopin N; Perrault A; Simonnot MO; Ignatiadis I; Rossano S; Crampon M
    J Contam Hydrol; 2022 Dec; 251():104065. PubMed ID: 36054960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electric fields strength on soil factors and microorganisms during electro-bioremediation of benzo[a]pyrene-contaminated soil.
    Li F; Li J; Tong M; Xi K; Guo S
    Chemosphere; 2023 Nov; 341():139845. PubMed ID: 37634583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons.
    Sun S; Wang Y; Zang T; Wei J; Wu H; Wei C; Qiu G; Li F
    Bioresour Technol; 2019 Jun; 281():421-428. PubMed ID: 30849698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization.
    Cazals F; Huguenot D; Crampon M; Colombano S; Betelu S; Galopin N; Perrault A; Simonnot MO; Ignatiadis I; Rossano S
    Sci Total Environ; 2020 Mar; 709():136143. PubMed ID: 31884277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils.
    Wolf DC; Cryder Z; Gan J
    Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.
    Zhao Z; Wong JW
    Environ Technol; 2009 Mar; 30(3):291-9. PubMed ID: 19438062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation.
    Posada-Baquero R; Grifoll M; Ortega-Calvo JJ
    Sci Total Environ; 2019 Jun; 668():790-796. PubMed ID: 30870747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of PAHs in soil by Lasiodiplodia theobromae and enhanced benzo[a]pyrene degradation by the addition of Tween-80.
    Wang C; Liu H; Li J; Sun H
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):10614-25. PubMed ID: 24878554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of combined remediation of pre-ozonation and bioaugmentation on degradation of benzo[a]pyrene and microbial community structure in soils.
    Lu X; Luo T; Li X; Wang Y; Ma Y; Wang B
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55557-55568. PubMed ID: 36897443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.
    Pacwa-Płociniczak M; Płaza GA; Poliwoda A; Piotrowska-Seget Z
    Environ Sci Pollut Res Int; 2014; 21(15):9385-95. PubMed ID: 24743958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.
    Singh AK; Cameotra SS
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7367-76. PubMed ID: 23681773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design.
    Mnif I; Sahnoun R; Ellouze-Chaabouni S; Ghribi D
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):851-61. PubMed ID: 23818070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sewage Sludge Polycyclic Aromatic Hydrocarbon (PAH) Decontamination Technique Based on the Utilization of a Lipopeptide Biosurfactant Extracted from Corn Steep Liquor.
    Vecino X; Rodríguez-López L; Cruz JM; Moldes AB
    J Agric Food Chem; 2015 Aug; 63(32):7143-50. PubMed ID: 26206325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation of available benzo[a]pyrene in aging soil co-contaminated with cadmium and pyrene.
    Wang K; Chen XX; Zhu ZQ; Huang HG; Li TQ; Yang XE
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):962-71. PubMed ID: 23842862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of benzo [a] pyrene in the soil enhanced by soapwort: The role of soapwort and functional microbial community.
    Yao D; Wang N; Dai W; Liu Y; Tian K; Wang H; Liu Y
    J Hazard Mater; 2023 Sep; 458():131993. PubMed ID: 37423134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-supported lipid bilayers as an in situ remediation strategy for hydrophobic organic contaminants in soils.
    Wang H; Kim B; Wunder SL
    Environ Sci Technol; 2015 Jan; 49(1):529-36. PubMed ID: 25454259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.
    Bezza FA; Chirwa EM
    Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anionic-nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil.
    Shi Z; Chen J; Liu J; Wang N; Sun Z; Wang X
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12769-74. PubMed ID: 26002358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.