These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 3291952)
1. The constitutive K+ pump in Serratia marcescens. Khachatryan AZ; Durgaryan SS; Martirosov SM Biochim Biophys Acta; 1988 Jul; 934(2):191-200. PubMed ID: 3291952 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the transport of potassium ions in the cyanobacterium Anabaena variabilis Kütz. Reed RH; Rowell P; Stewart WD Eur J Biochem; 1981 May; 116(2):323-30. PubMed ID: 6788551 [TBL] [Abstract][Full Text] [Related]
3. [Systems of H+ K+ ion exchange in E. coli]. Martirosov SM; Trchunian AA; Vartanian AG Biofizika; 1982; 27(1):48-51. PubMed ID: 7039686 [TBL] [Abstract][Full Text] [Related]
4. [The nature of H+-K+-exchange in anaerobically and aerobically grown S. typhimurium]. Trchunian AA; Ter-Nikogosian VA; Martirosov SM Biofizika; 1987; 32(4):609-13. PubMed ID: 2889475 [TBL] [Abstract][Full Text] [Related]
5. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium. Trchounian A; Ohanjayan E; Zakharyan E Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260 [TBL] [Abstract][Full Text] [Related]
6. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma]. Babich LG; Fomin VP; Kosterin SA Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629 [TBL] [Abstract][Full Text] [Related]
7. [The capacity of anaerobically grown bacteria to exchange the 2H+ of the cell for the K+ of the medium and to maintain a high K+ distribution between cell and medium]. Trchunian AA; Durgar'ian SS; Ogandzhanian ES; Ter-Nikogosian VA; Vardanian AG Nauchnye Doki Vyss Shkoly Biol Nauki; 1986; (12):82-8. PubMed ID: 2434147 [TBL] [Abstract][Full Text] [Related]
8. Quantitative association between electrical potential across the cytoplasmic membrane and early gentamicin uptake and killing in Staphylococcus aureus. Eisenberg ES; Mandel LJ; Kaback HR; Miller MH J Bacteriol; 1984 Mar; 157(3):863-7. PubMed ID: 6698939 [TBL] [Abstract][Full Text] [Related]
9. Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla. Efiok BJ; Webster DA Biochemistry; 1990 May; 29(19):4734-9. PubMed ID: 2372555 [TBL] [Abstract][Full Text] [Related]
10. Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pasteurii. Jahns T J Bacteriol; 1996 Jan; 178(2):403-9. PubMed ID: 8550459 [TBL] [Abstract][Full Text] [Related]
11. The electrochemical potential across mycoplasmal membranes. Schiefer HG; Schummer U Rev Infect Dis; 1982; 4 Suppl():S65-70. PubMed ID: 7123058 [TBL] [Abstract][Full Text] [Related]
12. The energy dependence of detergent resistance in Enterobacter cloacae: a likely requirement for ATP rather than a proton gradient or a membrane potential. Aspedon A; Nickerson KW Can J Microbiol; 1994 Mar; 40(3):184-91. PubMed ID: 8012906 [TBL] [Abstract][Full Text] [Related]
13. Oxygen taxis and proton motive force in Salmonella typhimurium. Shioi J; Taylor BL J Biol Chem; 1984 Sep; 259(17):10983-8. PubMed ID: 6381491 [TBL] [Abstract][Full Text] [Related]
14. On the mode of action of the bacteriocin butyricin 7423. Effects on membrane potential and potassium-ion accumulation in Clostridium pasteurianum. Clarke DJ; Morley CD; Kell DB; Morris JG Eur J Biochem; 1982 Sep; 127(1):105-16. PubMed ID: 6216104 [TBL] [Abstract][Full Text] [Related]
15. Effects of aerobiosis and nitrogen source on the proton motive force in growing Escherichia coli and Klebsiella pneumoniae cells. Kashket ER J Bacteriol; 1981 Apr; 146(1):377-84. PubMed ID: 6260744 [TBL] [Abstract][Full Text] [Related]
16. Relationship of the Escherichia coli TrkA system of potassium ion uptake with the F0F1-ATPase under growth conditions without anaerobic or aerobic respiration. Trchounian A; Ohanjanyan Y; Bagramyan K; Vardanian V; Zakharyan E; Vassilian A; Davtian M Biosci Rep; 1998 Jun; 18(3):143-54. PubMed ID: 9798786 [TBL] [Abstract][Full Text] [Related]
17. Effects of potassium ions on proton motive force in Rhodobacter sphaeroides. Abee T; Hellingwerf KJ; Konings WN J Bacteriol; 1988 Dec; 170(12):5647-53. PubMed ID: 3263963 [TBL] [Abstract][Full Text] [Related]
18. [Active electrogenic transport H+ in plasma membrane vesicles of cow parsnip phloem cells]. Kalinin VA; Opritov VA; Shvets IM Biofizika; 1982; 27(1):58-61. PubMed ID: 6461361 [TBL] [Abstract][Full Text] [Related]
19. Relationship between the F0F1-ATPase and the K(+)-transport system within the membrane of anaerobically grown Escherichia coli. N,N'-dicyclohexylcarbodiimide-sensitive ATPase activity in mutants with defects in K(+)-transport. Trchounian AA; Vassilian AV J Bioenerg Biomembr; 1994 Oct; 26(5):563-71. PubMed ID: 7896771 [TBL] [Abstract][Full Text] [Related]
20. Potassium ion is required for the generation of pH-dependent membrane potential and delta pH by the marine bacterium Vibrio alginolyticus. Tokuda H; Nakamura T; Unemoto T Biochemistry; 1981 Jul; 20(14):4198-203. PubMed ID: 7284321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]