These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32919530)

  • 1. Synthesis, characterization and flocculation performance of a novel sodium alginate-based flocculant.
    Liu C; Gao B; Wang S; Guo K; Shen X; Yue Q; Xu X
    Carbohydr Polym; 2020 Nov; 248():116790. PubMed ID: 32919530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water.
    Wu H; Liu Z; Yang H; Li A
    Water Res; 2016 Jun; 96():126-35. PubMed ID: 27038383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-pressure UV-initiated synthesis of cationic starch-based flocculant with high flocculation performance.
    Wu Y; Jiang X; Ma J; Wen J; Liu S; Liu H; Zheng H
    Carbohydr Polym; 2021 Dec; 273():118379. PubMed ID: 34560931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a novel chitosan-based flocculant with high flocculation performance, low toxicity and good floc properties.
    Yang Z; Li H; Yan H; Wu H; Yang H; Wu Q; Li H; Li A; Cheng R
    J Hazard Mater; 2014 Jul; 276():480-8. PubMed ID: 24929787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance.
    Huang M; Liu Z; Li A; Yang H
    J Environ Manage; 2017 Jul; 196():63-71. PubMed ID: 28284139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant.
    Liu Z; Wei H; Li A; Yang H
    Water Res; 2017 Jul; 118():160-166. PubMed ID: 28431348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater.
    Wu H; Liu Z; Li A; Yang H
    Chemosphere; 2017 May; 174():200-207. PubMed ID: 28167351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and evaluation of a novel cationic konjac glucomannan-based flocculant.
    Ren WJ; Zhang AQ; Qin SY; Li ZK
    Carbohydr Polym; 2016 Jun; 144():238-44. PubMed ID: 27083814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of cellulose-base amphoteric flocculant and its application in the treatment of wastewater.
    Wang Z; Huang W; Yang G; Liu Y; Liu S
    Carbohydr Polym; 2019 Jul; 215():179-188. PubMed ID: 30981343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater.
    Du Q; Wei H; Li A; Yang H
    Sci Total Environ; 2017 Dec; 601-602():1628-1637. PubMed ID: 28609850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and flocculation performance of a newly green flocculant derived from natural bagasse cellulose.
    Han Z; Huo J; Zhang X; Ngo HH; Guo W; Du Q; Zhang Y; Li C; Zhang D
    Chemosphere; 2022 Aug; 301():134615. PubMed ID: 35447202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural polymer matrix as safe flocculant to remove turbidity from kaolin suspension: Performance and governing mechanism.
    Ferasat Z; Panahi R; Mokhtarani B
    J Environ Manage; 2020 Feb; 255():109939. PubMed ID: 31790872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties.
    Wang JP; Yuan SJ; Wang Y; Yu HQ
    Water Res; 2013 May; 47(8):2643-8. PubMed ID: 23531592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave assisted copolymerization of sodium alginate and dimethyl diallyl ammonium chloride as flocculant for dye removal.
    Zhao X; Wang X; Song G; Lou T
    Int J Biol Macromol; 2020 Aug; 156():585-590. PubMed ID: 32305372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology.
    Wu H; Yang R; Li R; Long C; Yang H; Li A
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13038-48. PubMed ID: 25921759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of sodium alginate in improving floc size and strength and the subsequent effects on ultrafiltration membrane fouling.
    Wang Y; Li X; Wu C; Zhao Y; Gao BY; Yue Q
    Environ Technol; 2014; 35(1-4):10-7. PubMed ID: 24600835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the structural factors for the flocculation performance of a co-graft cationic starch-based flocculant.
    Hu P; Xi Z; Li Y; Li A; Yang H
    Chemosphere; 2020 Feb; 240():124866. PubMed ID: 31546191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology.
    Wang JP; Chen YZ; Wang Y; Yuan SJ; Yu HQ
    Water Res; 2011 Nov; 45(17):5633-40. PubMed ID: 21920576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of flocculation conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology.
    Yang ZH; Huang J; Zeng GM; Ruan M; Zhou CS; Li L; Rong ZG
    Bioresour Technol; 2009 Sep; 100(18):4233-9. PubMed ID: 19419858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dye or humic acid water treatment and membrane fouling by polyaluminum chloride composited with sodium alginate in coagulation-ultrafiltration process.
    Wang Y; Zhang F; Chu Y; Gao B; Yue Q
    Water Sci Technol; 2013; 67(10):2202-9. PubMed ID: 23676389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.