BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32919696)

  • 21. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration.
    Dong S; Sun J; Li Y; Li J; Cui W; Li B
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber.
    Lou T; Wang X; Song G
    Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and characterization of poly (ethylenimine) modified poly (l-lactic acid) nanofibrous scaffolds.
    Guo R; Chen S; Xiao X
    J Biomater Sci Polym Ed; 2019 Nov; 30(16):1523-1541. PubMed ID: 31359828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].
    Fang W; Zeng SG; Gao WF
    Nan Fang Yi Ke Da Xue Xue Bao; 2015 Apr; 35(4):567-72. PubMed ID: 25907946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration.
    Liu Y; Huang Q; Feng Q
    Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The preparation of PLLA/calcium phosphate hybrid composite and its evaluation of biocompatibility.
    Hamada Y; Fujitani W; Kawaguchi N; Daito K; Niido T; Uchinaka A; Mori S; Kojima Y; Manabe M; Nishida K; Arita K; Nakano T; Matsuura N
    Dent Mater J; 2012; 31(6):1087-96. PubMed ID: 23207220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. P34HB electrospun fibres promote bone regeneration in vivo.
    Fu N; Meng Z; Jiao T; Luo X; Tang Z; Zhu B; Sui L; Cai X
    Cell Prolif; 2019 May; 52(3):e12601. PubMed ID: 30896076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-Modified Hydroxyapatite Nanoparticle-Reinforced Polylactides for Three-Dimensional Printed Bone Tissue Engineering Scaffolds.
    Yang WF; Long L; Wang R; Chen D; Duan S; Xu FJ
    J Biomed Nanotechnol; 2018 Feb; 14(2):294-303. PubMed ID: 31352925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing the osteogenic differentiation of aligned electrospun poly(L-lactic acid) nanofiber scaffolds by incorporation of bioactive calcium silicate nanowires.
    Fu Z; Li D; Lin K; Zhao B; Wang X
    Int J Biol Macromol; 2023 Jan; 226():1079-1087. PubMed ID: 36436595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organic/inorganic composite membranes based on poly(L-lactic-co-glycolic acid) and mesoporous silica for effective bone tissue engineering.
    Zhou P; Cheng X; Xia Y; Wang P; Zou K; Xu S; Du J
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20895-903. PubMed ID: 25394879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface biofunctionalization of three-dimensional porous poly(lactic acid) scaffold using chitosan/OGP coating for bone tissue engineering.
    Zeng S; Ye J; Cui Z; Si J; Wang Q; Wang X; Peng K; Chen W
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():92-101. PubMed ID: 28532111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds.
    Xiao G; Yin H; Xu W; Lu Y
    J Biomater Sci Polym Ed; 2016 Oct; 27(14):1462-75. PubMed ID: 27398630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration.
    Ren L; Pandit V; Elkin J; Denman T; Cooper JA; Kotha SP
    Nanoscale; 2013 Mar; 5(6):2337-45. PubMed ID: 23392606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.
    Sadiasa A; Nguyen TH; Lee BT
    J Biomater Sci Polym Ed; 2014; 25(2):150-67. PubMed ID: 24138179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite scaffolds for osteoblast growth and differentiation.
    Chen BQ; Kankala RK; Chen AZ; Yang DZ; Cheng XX; Jiang NN; Zhu K; Wang SB
    Int J Nanomedicine; 2017; 12():1877-1890. PubMed ID: 28331312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J
    J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.