BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32919812)

  • 1. Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force.
    Bezer JH; Koruk H; Rowlands CJ; Choi JJ
    Ultrasound Med Biol; 2020 Dec; 46(12):3327-3338. PubMed ID: 32919812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of mechanical properties of a viscoelastic medium using a laser-induced microbubble interrogated by an acoustic radiation force.
    Yoon S; Aglyamov SR; Karpiouk AB; Kim S; Emelianov SY
    J Acoust Soc Am; 2011 Oct; 130(4):2241-8. PubMed ID: 21973379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.
    Yoon S; Aglyamov S; Karpiouk A; Emelianov S
    Phys Med Biol; 2012 Aug; 57(15):4871-84. PubMed ID: 22797709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superharmonic microbubble Doppler effect in ultrasound therapy.
    Pouliopoulos AN; Choi JJ
    Phys Med Biol; 2016 Aug; 61(16):6154-71. PubMed ID: 27469394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions.
    Zhao X; Wright A; Goertz DE
    Ultrason Sonochem; 2023 Feb; 93():106291. PubMed ID: 36640460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining radiation force with cavitation for enhanced sonothrombolysis.
    Chuang YH; Cheng PW; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):97-104. PubMed ID: 23287916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary bjerknes forces deform targeted microbubbles.
    Kokhuis TJ; Garbin V; Kooiman K; Naaijkens BA; Juffermans LJ; Kamp O; van der Steen AF; Versluis M; de Jong N
    Ultrasound Med Biol; 2013 Mar; 39(3):490-506. PubMed ID: 23347643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic Traveling Waves for Near-Wall Positioning of Single Microbubbles in a Flowing Channel.
    Kim YC; Vijayaratnam PRS; Blanloeuil P; Taylor RA; Barber TJ
    Ultrasound Med Biol; 2023 Apr; 49(4):961-969. PubMed ID: 36669943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound.
    Lazarus C; Pouliopoulos AN; Tinguely M; Garbin V; Choi JJ
    J Acoust Soc Am; 2017 Nov; 142(5):3135. PubMed ID: 29195473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy.
    Pouliopoulos AN; Bonaccorsi S; Choi JJ
    Phys Med Biol; 2014 Nov; 59(22):6941-57. PubMed ID: 25350470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental study on the stiffness of size-isolated microbubbles using atomic force microscopy.
    Chen CC; Wu SY; Finan JD; Morrison B; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Mar; 60(3):524-34. PubMed ID: 23475918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical observations of acoustical radiation force effects on individual air bubbles.
    Palanchon P; Tortoli P; Bouakaz A; Versluis M; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):104-10. PubMed ID: 15742566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro assessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots.
    Hendley SA; Bollen V; Anthony GJ; Paul JD; Bader KB
    Phys Med Biol; 2019 Jul; 64(14):145019. PubMed ID: 31146275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ultrasound on adherent microbubble contrast agents.
    Loughran J; Sennoga C; J Eckersley R; Tang MX
    Phys Med Biol; 2012 Nov; 57(21):6999-7014. PubMed ID: 23044731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of ultrasound parameters and microbubble concentration on acoustic particle palpation.
    Saharkhiz N; Koruk H; Choi JJ
    J Acoust Soc Am; 2018 Aug; 144(2):796. PubMed ID: 30180665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational framework for the multiphysics simulation of microbubble-mediated sonothrombolysis using a forward-viewing intravascular transducer.
    Tan ZQ; Ooi EH; Chiew YS; Foo JJ; Ng EYK; Ooi ET
    Ultrasonics; 2023 May; 131():106961. PubMed ID: 36812819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of size range on ultrasound-induced translations in microbubble populations.
    Supponen O; Upadhyay A; Lum J; Guidi F; Murray T; Vos HJ; Tortoli P; Borden M
    J Acoust Soc Am; 2020 May; 147(5):3236. PubMed ID: 32486824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubble-based acoustic radiation force elasticity imaging.
    Erpelding TN; Hollman KW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):971-9. PubMed ID: 16118978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.