These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32920019)

  • 1. Novel conditional plasmids regulated by chemical switches provide versatile tools for genetic engineering in Escherichia coli.
    Riedl A; Gruber S; Ruzsics Z
    Plasmid; 2020 Sep; 111():102531. PubMed ID: 32920019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of new versatile plasmid-based systems for λRed-mediated Escherichia coli genome engineering.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2018 Aug; 151():48-56. PubMed ID: 29885886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion.
    Hook CD; Samsonov VV; Ublinskaya AA; Kuvaeva TM; Andreeva EV; Gorbacheva LY; Stoynova NV
    J Microbiol Methods; 2016 Nov; 130():83-91. PubMed ID: 27567891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-In/Out strategy for genes integration into bacterial chromosome: a novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure.
    Minaeva NI; Gak ER; Zimenkov DV; Skorokhodova AY; Biryukova IV; Mashko SV
    BMC Biotechnol; 2008 Aug; 8():63. PubMed ID: 18699991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mini-Mu transposon-based method for multiple DNA fragment integration into bacterial genomes.
    Wei XX; Shi ZY; Li ZJ; Cai L; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1533-41. PubMed ID: 20508928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker-free chromosomal expression of foreign and native genes in Escherichia coli.
    Chiang CJ; Chen PT; Chen SY; Chao YP
    Methods Mol Biol; 2011; 765():113-23. PubMed ID: 21815090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient recombination system for chromosome engineering in Escherichia coli.
    Yu D; Ellis HM; Lee EC; Jenkins NA; Copeland NG; Court DL
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5978-83. PubMed ID: 10811905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point mutation of bacterial artificial chromosomes by ET recombination.
    Muyrers JP; Zhang Y; Benes V; Testa G; Ansorge W; Stewart AF
    EMBO Rep; 2000 Sep; 1(3):239-43. PubMed ID: 11256606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An easy and versatile 2-step protocol for targeted modification and subcloning of DNA from bacterial artificial chromosomes using non-commercial plasmids.
    Hartwich H; Nothwang HG
    BMC Res Notes; 2012 Mar; 5():156. PubMed ID: 22433714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicopy plasmid modification with phage lambda Red recombineering.
    Thomason LC; Costantino N; Shaw DV; Court DL
    Plasmid; 2007 Sep; 58(2):148-58. PubMed ID: 17434584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved recombineering approach by adding RecA to lambda Red recombination.
    Wang J; Sarov M; Rientjes J; Fu J; Hollak H; Kranz H; Xie W; Stewart AF; Zhang Y
    Mol Biotechnol; 2006 Jan; 32(1):43-53. PubMed ID: 16382181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excision of selectable markers from the Escherichia coli genome without counterselection using an optimized λRed recombineering procedure.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2019 Mar; 158():86-92. PubMed ID: 30738107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly efficient recombineering-based method for generating conditional knockout mutations.
    Liu P; Jenkins NA; Copeland NG
    Genome Res; 2003 Mar; 13(3):476-84. PubMed ID: 12618378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria.
    Haldimann A; Wanner BL
    J Bacteriol; 2001 Nov; 183(21):6384-93. PubMed ID: 11591683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new family of conditional replicating plasmids and their cognate Escherichia coli host strains.
    Matsumoto-Mashimo C; Guerout AM; Mazel D
    Res Microbiol; 2004; 155(6):455-61. PubMed ID: 15249062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pIT5 Plasmid Series, an Improved Toolkit for Repeated Genome Integration in
    Hao N; Chen Q; Dodd IB; Shearwin KE
    ACS Synth Biol; 2021 Jul; 10(7):1633-1639. PubMed ID: 34190535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome.
    Platt R; Drescher C; Park SK; Phillips GJ
    Plasmid; 2000 Jan; 43(1):12-23. PubMed ID: 10610816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.
    Juhas M; Ajioka JW
    J Microbiol Methods; 2016 Jun; 125():1-7. PubMed ID: 27033694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.