These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32920248)

  • 1. High-resolution purification of a therapeutic PEGylated protein using a cuboid packed-bed device.
    Chen G; Umatheva U; Pagano J; Yu D; Ghose S; Li Z; Ghosh R
    J Chromatogr A; 2020 Sep; 1630():461524. PubMed ID: 32920248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of process parameters on the efficiency of chromatographic separations using a cuboid packed-bed device.
    Chen G; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1086():23-28. PubMed ID: 29654983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cuboid chromatography device having short bed-height gives better protein separation at a significantly lower pressure drop than a taller column having the same bed-volume.
    Chen G; Roshankhah R; Ghosh R
    J Chromatogr A; 2021 Jun; 1647():462167. PubMed ID: 33962076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient capture of monoclonal antibody from cell culture supernatant using protein A media contained in a cuboid packed-bed device.
    Chen G; Gerrior A; Durocher Y; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Dec; 1134-1135():121853. PubMed ID: 31785532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study for high-resolution multi-component separation of protein mixture using a cation-exchange cuboid packed-bed device.
    Chen G; Gerrior A; Ghosh R
    J Chromatogr A; 2018 May; 1549():25-30. PubMed ID: 29559265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling and evaluation of performance of cuboid packed-bed devices for chromatographic separations.
    Ghosh R; Chen G
    J Chromatogr A; 2017 Sep; 1515():138-145. PubMed ID: 28801045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and high-resolution purification of a PEGylated protein using a z
    Chen G; Pagano J; Yu D; Ghose S; Li Z; Ghosh R
    J Chromatogr A; 2021 Aug; 1652():462375. PubMed ID: 34256267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.
    Madadkar P; Nino SL; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Nov; 1035():1-7. PubMed ID: 27656841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation and experimental study of the transport of protein bands through cuboid packed-bed devices during chromatographic separations.
    Chen G; Ghosh R
    J Chromatogr A; 2020 Mar; 1615():460764. PubMed ID: 31826814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dry-compression packing of hydroxyapatite nanoparticles within a flat cuboid chromatography device and its use for fast protein separation.
    Ghosh R; Hale G; Durocher Y; Gatt P
    J Chromatogr A; 2022 Mar; 1667():462881. PubMed ID: 35149414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of expanded bed adsorption to purify flavonoids from Ginkgo biloba L.
    Li J; Chase HA
    J Chromatogr A; 2009 Dec; 1216(50):8759-70. PubMed ID: 19321174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flow distribution and collection feature for ensuring scalable uniform flow in a chromatography device.
    Ghosh R; Chen G; Umatheva U; Gatt P
    J Chromatogr A; 2020 May; 1618():460892. PubMed ID: 31992474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast, low-pressure chromatographic separation of proteins using hydroxyapatite nanoparticles.
    Chen G; Zhitomirsky I; Ghosh R
    Talanta; 2019 Jul; 199():472-477. PubMed ID: 30952286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A z
    Ghosh R; Chen G; Roshankhah R; Umatheva U; Gatt P
    J Chromatogr A; 2020 Oct; 1629():461453. PubMed ID: 32861093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mono-PEGylated lysozyme purification with increased productivity and isomer differentiation through heparin monolith chromatography.
    Mejía-Manzano LA; Campos-García VR; Perdomo-Abúndez FC; Medina-Rivero E; González-Valdez J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Jul; 1204():123323. PubMed ID: 35700648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.
    Müller E; Josic D; Schröder T; Moosmann A
    J Chromatogr A; 2010 Jul; 1217(28):4696-703. PubMed ID: 20570270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and high-resolution fractionation of positional isomers of a PEGylated protein using membrane chromatography.
    Chen G; Butani N; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Jul; 1203():123292. PubMed ID: 35594802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEG chain length impacts yield of solid-phase protein PEGylation and efficiency of PEGylated protein separation by ion-exchange chromatography: insights of mechanistic models.
    Yoshimoto N; Isakari Y; Itoh D; Yamamoto S
    Biotechnol J; 2013 Jul; 8(7):801-10. PubMed ID: 23788446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-Based Hybrid Method for Purifying PEGylated Proteins.
    Lam SF; Shang X; Ghosh R
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the ion exchange chromatography for matrix-assisted PEGylation and purification of consensus interferon.
    Bajwa F; Ahmed N; Khan MA; Azam F; Akram M; Tahir S; Zafar AU
    Biotechnol Appl Biochem; 2020 Mar; 67(2):196-205. PubMed ID: 31589775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.