BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32920263)

  • 1. Enhanced osteogenesis of 3D printed β-TCP scaffolds with Cissus Quadrangularis extract-loaded polydopamine coatings.
    Robertson SF; Bose S
    J Mech Behav Biomed Mater; 2020 Nov; 111():103945. PubMed ID: 32920263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of mussel-inspired polydopamine on the reinforced properties of 3D printed β-tricalcium phosphate/polycaprolactone scaffolds for bone regeneration.
    Ho CC; Chen YW; Wang K; Lin YH; Chen TC; Shie MY
    J Mater Chem B; 2022 Dec; 11(1):72-82. PubMed ID: 36373587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polydopamine-coated 3D-printed β-tricalcium phosphate scaffolds to promote the adhesion and osteogenesis of BMSCs for bone-defect repair: mRNA transcriptomic sequencing analysis.
    Sun X; Jiao X; Wang Z; Ma J; Wang T; Zhu D; Li H; Tang L; Li H; Wang C; Li Y; Xu C; Wang J; Gan Y; Jin W
    J Mater Chem B; 2023 Feb; 11(8):1725-1738. PubMed ID: 36723218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(Dopamine) Coating on 3D-Printed Poly-Lactic-Co-Glycolic Acid/β-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering.
    Xu Z; Wang N; Liu P; Sun Y; Wang Y; Fei F; Zhang S; Zheng J; Han B
    Molecules; 2019 Dec; 24(23):. PubMed ID: 31810169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C
    Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis.
    Ma L; Cheng S; Ji X; Zhou Y; Zhang Y; Li Q; Tan C; Peng F; Zhang Y; Huang W
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111303. PubMed ID: 32919664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration.
    Ghorai SK; Dutta A; Roy T; Guha Ray P; Ganguly D; Ashokkumar M; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28455-28475. PubMed ID: 35715225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cissus quadrangularis L extract-loaded tricalcium phosphate reinforced natural polymer composite for guided bone regeneration.
    Liao L; Zhu W; Tao C; Li D; Mao M
    J Mater Sci Mater Med; 2023 Jul; 34(7):33. PubMed ID: 37466722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds.
    Sarkar N; Bose S
    Acta Biomater; 2020 Sep; 114():407-420. PubMed ID: 32652224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ginger and Garlic Extracts Enhance Osteogenesis in 3D Printed Calcium Phosphate Bone Scaffolds with Bimodal Pore Distribution.
    Bose S; Banerjee D; Vu AA
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):12964-12975. PubMed ID: 35263096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds.
    Bose S; Banerjee D; Robertson S; Vahabzadeh S
    Ann Biomed Eng; 2018 Sep; 46(9):1241-1253. PubMed ID: 29728785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat Calvarial Bone Regeneration by 3D-Printed β-Tricalcium Phosphate Incorporating MicroRNA-200c.
    Remy MT; Akkouch A; He L; Eliason S; Sweat ME; Krongbaramee T; Fei F; Qian F; Amendt BA; Song X; Hong L
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4521-4534. PubMed ID: 34437807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano tantalum-coated 3D printed porous polylactic acid/beta-tricalcium phosphate scaffolds with enhanced biological properties for guided bone regeneration.
    Liu T; Li B; Chen G; Ye X; Zhang Y
    Int J Biol Macromol; 2022 Nov; 221():371-380. PubMed ID: 36067849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Petroleum ether extract of Cissus quadrangularis (Linn.) enhances bone marrow mesenchymal stem cell proliferation and facilitates osteoblastogenesis.
    Potu BK; Bhat KM; Rao MS; Nampurath GK; Chamallamudi MR; Nayak SR; Muttigi MS
    Clinics (Sao Paulo); 2009; 64(10):993-8. PubMed ID: 19841707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Magnetic Iron Oxide/Polydopamine Coating Can Improve Osteogenesis of 3D-Printed Porous Titanium Scaffolds with a Static Magnetic Field by Upregulating the TGFβ-Smads Pathway.
    Huang Z; He Y; Chang X; Liu J; Yu L; Wu Y; Li Y; Tian J; Kang L; Wu D; Wang H; Wu Z; Qiu G
    Adv Healthc Mater; 2020 Jul; 9(14):e2000318. PubMed ID: 32548975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells.
    Fahimipour F; Dashtimoghadam E; Rasoulianboroujeni M; Yazdimamaghani M; Khoshroo K; Tahriri M; Yadegari A; Gonzalez JA; Vashaee D; Lobner DC; Jafarzadeh Kashi TS; Tayebi L
    Dent Mater; 2018 Feb; 34(2):209-220. PubMed ID: 29054688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with
    Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.