These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32920483)

  • 21. Biomass production and biochemical profiles of a freshwater microalga Chlorella kessleri in mixotrophic culture: Effects of light intensity and photoperiodicity.
    Deng X; Chen B; Xue C; Li D; Hu X; Gao K
    Bioresour Technol; 2019 Feb; 273():358-367. PubMed ID: 30453250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparable effects of low-intensity electromagnetic irradiation at the frequency of 51.8 and 53 GHz and antibiotic ceftazidime on Lactobacillus acidophilus growth and survival.
    Soghomonyan D; Trchounian A
    Cell Biochem Biophys; 2013; 67(3):829-35. PubMed ID: 23516095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increasing DNA content for cost-effective oil production in Parachlorella kessleri.
    You Z; Zhang Q; Miao X
    Bioresour Technol; 2019 Aug; 285():121332. PubMed ID: 30999194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The complete mitochondrial genome of an oil-rich microalga
    Ji L; Nan FR; Xie SL; Li Y
    Mitochondrial DNA B Resour; 2021; 6(8):2408-2409. PubMed ID: 34345710
    [No Abstract]   [Full Text] [Related]  

  • 25. Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga Parachlorella kessleri QWY28.
    Qu W; Zhang C; Zhang Y; Ho SH
    Bioresour Technol; 2019 Oct; 289():121702. PubMed ID: 31260935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Changes in ion transport through membranes, ATPase activity and antibiotics effects in Enterococcus hirae after low intensity electromagnetic irradiation of 51,8 and 53,0 GHz frequencies].
    Torgomian É; Oganian V; Blbulian C; Trchunian A
    Biofizika; 2013; 58(4):674-80. PubMed ID: 24455887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of Parachlorella kessleri cultivation on brewery wastewater.
    O'Rourke R; Gaffney M; Murphy R
    Water Sci Technol; 2016; 73(6):1401-8. PubMed ID: 27003082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficiency of the fatty acids extracted from the microalga Parachlorella kessleri in wound-healing.
    El-Sheekh M; Bedaiwy M; Mansour H; El-Shenody RA
    Burns; 2024 May; 50(4):924-935. PubMed ID: 38378390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous mannitol-1-phosphate dehydrogenase gene over-expression in Parachlorella kessleri for enhanced microalgal biomass productivity.
    Rathod JP; Vira C; Lali AM; Prakash G
    J Genet Eng Biotechnol; 2022 Feb; 20(1):38. PubMed ID: 35226194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface sorption and nanoparticle production as a silver detoxification mechanism of the freshwater alga Parachlorella kessleri.
    Kadukova J
    Bioresour Technol; 2016 Sep; 216():406-13. PubMed ID: 27262095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular profiling of an oleaginous trebouxiophycean alga
    Shaikh KM; Nesamma AA; Abdin MZ; Jutur PP
    Biotechnol Biofuels; 2019; 12():182. PubMed ID: 31338124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process.
    Skjånes K; Rebours C; Lindblad P
    Crit Rev Biotechnol; 2013 Jun; 33(2):172-215. PubMed ID: 22765907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The effects of electromagnetic radiation of extremely high frequency and low intensity on the growth rate of bacteria Escherichia coli and the role of medium pH].
    Tadevosian A; Kalantarian V; Trchunian A
    Biofizika; 2007; 52(5):893-8. PubMed ID: 17969925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties.
    Torgomyan H; Kalantaryan V; Trchounian A
    Cell Biochem Biophys; 2011 Jul; 60(3):275-81. PubMed ID: 21229332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.
    Klassen V; Blifernez-Klassen O; Hoekzema Y; Mussgnug JH; Kruse O
    J Biotechnol; 2015 Dec; 215():44-51. PubMed ID: 26022425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production.
    Zhong Y; Cheng JJ
    J Agric Food Chem; 2017 Dec; 65(50):10875-10883. PubMed ID: 29179543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri.
    Rathod JP; Prakash G; Pandit R; Lali AM
    Photosynth Res; 2013 Nov; 118(1-2):141-6. PubMed ID: 24097049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study on flocculating ability and growth potential of two microalgae in simulated secondary effluent.
    Lv J; Guo J; Feng J; Liu Q; Xie S
    Bioresour Technol; 2016 Apr; 205():111-7. PubMed ID: 26820924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of green and blue-green light on the growth, pigment concentration, and fatty acid unsaturation in the microalga Monoraphidium braunii.
    Helamieh M; Reich M; Rohne P; Riebesell U; Kerner M; Kümmerer K
    Photochem Photobiol; 2024; 100(3):587-595. PubMed ID: 37882377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the Chloroplast Genome Facilitated the Transformation of
    Nawkarkar P; Chugh S; Sharma S; Jain M; Kajla S; Kumar S
    Curr Genomics; 2020 Dec; 21(8):610-623. PubMed ID: 33414682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.