These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 32920676)
1. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops. Sprenger AR; Shaik VA; Ardekani AM; Lisicki M; Mathijssen AJTM; Guzmán-Lastra F; Löwen H; Menzel AM; Daddi-Moussa-Ider A Eur Phys J E Soft Matter; 2020 Sep; 43(9):58. PubMed ID: 32920676 [TBL] [Abstract][Full Text] [Related]
2. Extensional rheology of active suspensions. Saintillan D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322 [TBL] [Abstract][Full Text] [Related]
3. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations. Gyrya V; Lipnikov K; Aranson IS; Berlyand L J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812 [TBL] [Abstract][Full Text] [Related]
4. Mechanical Coupling of Puller and Pusher Active Microswimmers Influences Motility. Singh AV; Kishore V; Santomauro G; Yasa O; Bill J; Sitti M Langmuir; 2020 May; 36(19):5435-5443. PubMed ID: 32343587 [TBL] [Abstract][Full Text] [Related]
5. Flow properties and hydrodynamic interactions of rigid spherical microswimmers. Adhyapak TC; Jabbari-Farouji S Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781 [TBL] [Abstract][Full Text] [Related]
6. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study. Setter E; Bucher I; Haber S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203 [TBL] [Abstract][Full Text] [Related]
7. Swimming with a cage: low-Reynolds-number locomotion inside a droplet. Reigh SY; Zhu L; Gallaire F; Lauga E Soft Matter; 2017 May; 13(17):3161-3173. PubMed ID: 28397936 [TBL] [Abstract][Full Text] [Related]
8. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
9. State diagram of a three-sphere microswimmer in a channel. Daddi-Moussa-Ider A; Lisicki M; Mathijssen AJTM; Hoell C; Goh S; Bławzdziewicz J; Menzel AM; Löwen H J Phys Condens Matter; 2018 Jun; 30(25):254004. PubMed ID: 29757157 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamics-mediated trapping of micro-swimmers near drops. Desai N; Shaik VA; Ardekani AM Soft Matter; 2018 Jan; 14(2):264-278. PubMed ID: 29239442 [TBL] [Abstract][Full Text] [Related]
11. Squirming in a viscous fluid enclosed by a Brinkman medium. Nganguia H; Zhu L; Palaniappan D; Pak OS Phys Rev E; 2020 Jun; 101(6-1):063105. PubMed ID: 32688621 [TBL] [Abstract][Full Text] [Related]
12. Frequency-dependent higher-order Stokes singularities near a planar elastic boundary: Implications for the hydrodynamics of an active microswimmer near an elastic interface. Daddi-Moussa-Ider A; Kurzthaler C; Hoell C; Zöttl A; Mirzakhanloo M; Alam MR; Menzel AM; Löwen H; Gekle S Phys Rev E; 2019 Sep; 100(3-1):032610. PubMed ID: 31639990 [TBL] [Abstract][Full Text] [Related]
13. On the cross-streamline lift of microswimmers in viscoelastic flows. Choudhary A; Stark H Soft Matter; 2021 Dec; 18(1):48-52. PubMed ID: 34878484 [TBL] [Abstract][Full Text] [Related]
14. Enhanced motility of a microswimmer in rigid and elastic confinement. Ledesma-Aguilar R; Yeomans JM Phys Rev Lett; 2013 Sep; 111(13):138101. PubMed ID: 24116818 [TBL] [Abstract][Full Text] [Related]
15. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions. Reinken H; Klapp SHL; Bär M; Heidenreich S Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118 [TBL] [Abstract][Full Text] [Related]
16. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling. Jibuti L; Zimmermann W; Rafaï S; Peyla P Phys Rev E; 2017 Nov; 96(5-1):052610. PubMed ID: 29347779 [TBL] [Abstract][Full Text] [Related]
17. Swimming trajectories of a three-sphere microswimmer near a wall. Daddi-Moussa-Ider A; Lisicki M; Hoell C; Löwen H J Chem Phys; 2018 Apr; 148(13):134904. PubMed ID: 29626882 [TBL] [Abstract][Full Text] [Related]
18. Rapid expulsion of microswimmers by a vortical flow. Sokolov A; Aranson IS Nat Commun; 2016 Mar; 7():11114. PubMed ID: 27005581 [TBL] [Abstract][Full Text] [Related]
19. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design. Dutra RF; Zinani FSF; Rocha LAO; Biserni C Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083 [TBL] [Abstract][Full Text] [Related]
20. Motion of microswimmers in cylindrical microchannels. Overberg FA; Gompper G; Fedosov DA Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]