BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32920676)

  • 1. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops.
    Sprenger AR; Shaik VA; Ardekani AM; Lisicki M; Mathijssen AJTM; Guzmán-Lastra F; Löwen H; Menzel AM; Daddi-Moussa-Ider A
    Eur Phys J E Soft Matter; 2020 Sep; 43(9):58. PubMed ID: 32920676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensional rheology of active suspensions.
    Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
    Gyrya V; Lipnikov K; Aranson IS; Berlyand L
    J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Coupling of Puller and Pusher Active Microswimmers Influences Motility.
    Singh AV; Kishore V; Santomauro G; Yasa O; Bill J; Sitti M
    Langmuir; 2020 May; 36(19):5435-5443. PubMed ID: 32343587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swimming with a cage: low-Reynolds-number locomotion inside a droplet.
    Reigh SY; Zhu L; Gallaire F; Lauga E
    Soft Matter; 2017 May; 13(17):3161-3173. PubMed ID: 28397936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State diagram of a three-sphere microswimmer in a channel.
    Daddi-Moussa-Ider A; Lisicki M; Mathijssen AJTM; Hoell C; Goh S; Bławzdziewicz J; Menzel AM; Löwen H
    J Phys Condens Matter; 2018 Jun; 30(25):254004. PubMed ID: 29757157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamics-mediated trapping of micro-swimmers near drops.
    Desai N; Shaik VA; Ardekani AM
    Soft Matter; 2018 Jan; 14(2):264-278. PubMed ID: 29239442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Squirming in a viscous fluid enclosed by a Brinkman medium.
    Nganguia H; Zhu L; Palaniappan D; Pak OS
    Phys Rev E; 2020 Jun; 101(6-1):063105. PubMed ID: 32688621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-dependent higher-order Stokes singularities near a planar elastic boundary: Implications for the hydrodynamics of an active microswimmer near an elastic interface.
    Daddi-Moussa-Ider A; Kurzthaler C; Hoell C; Zöttl A; Mirzakhanloo M; Alam MR; Menzel AM; Löwen H; Gekle S
    Phys Rev E; 2019 Sep; 100(3-1):032610. PubMed ID: 31639990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the cross-streamline lift of microswimmers in viscoelastic flows.
    Choudhary A; Stark H
    Soft Matter; 2021 Dec; 18(1):48-52. PubMed ID: 34878484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced motility of a microswimmer in rigid and elastic confinement.
    Ledesma-Aguilar R; Yeomans JM
    Phys Rev Lett; 2013 Sep; 111(13):138101. PubMed ID: 24116818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions.
    Reinken H; Klapp SHL; Bär M; Heidenreich S
    Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling.
    Jibuti L; Zimmermann W; Rafaï S; Peyla P
    Phys Rev E; 2017 Nov; 96(5-1):052610. PubMed ID: 29347779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swimming trajectories of a three-sphere microswimmer near a wall.
    Daddi-Moussa-Ider A; Lisicki M; Hoell C; Löwen H
    J Chem Phys; 2018 Apr; 148(13):134904. PubMed ID: 29626882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid expulsion of microswimmers by a vortical flow.
    Sokolov A; Aranson IS
    Nat Commun; 2016 Mar; 7():11114. PubMed ID: 27005581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion of microswimmers in cylindrical microchannels.
    Overberg FA; Gompper G; Fedosov DA
    Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.