These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 32920687)

  • 1. Increased production of hydrogen with in situ CO
    Darwish MSA; El Naggar AMA; Morshedy AS; Haneklaus N
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):3566-3578. PubMed ID: 32920687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.
    Hamzezadeh-Nakhjavani S; Tavakoli O; Akhlaghi SP; Salehi Z; Esmailnejad-Ahranjani P; Arpanaei A
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18859-73. PubMed ID: 26206125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Plasmon-Resonance-Induced Photocatalysis by Core-Shell SiO
    Mohanty S; Babu P; Parida K; Naik B
    Inorg Chem; 2019 Aug; 58(15):9643-9654. PubMed ID: 31339037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient Visible-Light-Induced Photocatalytic Hydrogen Production via Water Splitting using FeCl
    Elwan HA; Morshedy AS; El Naggar AMA
    ChemSusChem; 2020 Dec; 13(24):6602-6612. PubMed ID: 33049113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO
    Yoshino S; Takayama T; Yamaguchi Y; Iwase A; Kudo A
    Acc Chem Res; 2022 Apr; 55(7):966-977. PubMed ID: 35230087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effluent degradation followed hydrogen production using near-infrared sensitized nanocomposite of reduced nanographene oxide under visible light.
    Lourdusamy VJK; Thomas MRN; Subramani S
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):18113-18122. PubMed ID: 36205875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of Ag@CeO2 core-shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance.
    Wu L; Fang S; Ge L; Han C; Qiu P; Xin Y
    J Hazard Mater; 2015 Dec; 300():93-103. PubMed ID: 26163484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrahedral UMOFNs/Ag
    Kusutaki T; Katsumata H; Tateishi I; Furukawa M; Kaneco S
    ACS Omega; 2019 Oct; 4(14):15975-15984. PubMed ID: 31592468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Strong Light Scattering Absorber of TiO₂-CMK-3/Ag for Photocatalytic Water Splitting under Visible Light Irradiation.
    Hung WH; Lai SN; Lo AY
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8412-8. PubMed ID: 25848834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ag-Decorated ATaO3 (A = K, Na) Nanocube Plasmonic Photocatalysts with Enhanced Photocatalytic Water-Splitting Properties.
    Xu D; Yang S; Jin Y; Chen M; Fan W; Luo B; Shi W
    Langmuir; 2015 Sep; 31(35):9694-9. PubMed ID: 26280571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel functional core-shell-shell nanoparticles: From design to anti-bacterial applications.
    Bouazizi N; Bargougui R; Thebault P; Clamens T; Desriac F; Fioresi F; Ladam G; Morin-Grognet S; Mofaddel N; Lesouhaitier O; Le Derf F; Vieillard J
    J Colloid Interface Sci; 2018 Mar; 513():726-735. PubMed ID: 29220687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile in situ approach to fabricate N,S-TiO2/g-C3N4 nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution.
    Pany S; Parida KM
    Phys Chem Chem Phys; 2015 Mar; 17(12):8070-7. PubMed ID: 25729789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of hydrogen production by photocatalytic water splitting using liquid phase plasma over Ag-doped TiO
    Park YK; Kim BJ; Jeong S; Jeon KJ; Chung KH; Jung SC
    Environ Res; 2020 Sep; 188():109630. PubMed ID: 32521308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation.
    Yu C; Wei L; Zhou W; Dionysiou DD; Zhu L; Shu Q; Liu H
    Chemosphere; 2016 Aug; 157():250-61. PubMed ID: 27236845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible light-activated 1-D core-shell paramagnetic Fe-Ag@AgCl as an innovative method for photocatalytic inactivation of E. coli.
    Cui Y; Thathsarani N; Peng L; Gao Y; Lei L; Zhou Z; Liang L; Shi X
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):11990-12000. PubMed ID: 31982998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.
    Sohrabnezhad Sh; Zanjanchi MA; Razavi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():129-35. PubMed ID: 24769384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.
    Ge MZ; Cao CY; Li SH; Tang YX; Wang LN; Qi N; Huang JY; Zhang KQ; Al-Deyab SS; Lai YK
    Nanoscale; 2016 Mar; 8(9):5226-34. PubMed ID: 26878901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of silver immobilized-poly(methyl methacrylate)/polyethyleneimine core-shell particle composites.
    Jenjob S; Tharawut T; Sunintaboon P
    Mater Sci Eng C Mater Biol Appl; 2012 Oct; 32(7):2068-2072. PubMed ID: 34062697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal synthesis of CdS nanorods anchored on α-Fe
    Lei R; Ni H; Chen R; Gu H; Zhang B; Zhan W
    J Colloid Interface Sci; 2018 Mar; 514():496-506. PubMed ID: 29289732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting.
    Hsu YK; Chen YC; Lin YG
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14157-62. PubMed ID: 26053274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.