These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32920688)

  • 1. Removal of lincomycin from aqueous solution by birnessite: kinetics, mechanism, and effect of common ions.
    Ying J; Qin X; Zhang Z; Liu F
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):3590-3600. PubMed ID: 32920688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water with low ionic strength recovers the passivated birnessite-coated sand reactivity towards lincomycin removal.
    Ying J; Qin X; Wen D; Huang F; Liu F
    Environ Pollut; 2022 Dec; 315():120306. PubMed ID: 36181928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems.
    Gao T; Shen Y; Jia Z; Qiu G; Liu F; Zhang Y; Feng X; Cai C
    Geochem Trans; 2015 Dec; 16(1):16. PubMed ID: 26435697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure.
    Zhang T; Liu L; Tan W; Suib SL; Qiu G; Liu F
    Environ Sci Technol; 2018 Jun; 52(12):6864-6871. PubMed ID: 29792324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of aqueous Mn(II) on the sorption of Zn(II) by hexagonal birnessite.
    Lefkowitz JP; Elzinga EJ
    Environ Sci Technol; 2015 Apr; 49(8):4886-93. PubMed ID: 25790186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solutions for an efficient arsenite oxidation and removal from groundwater containing ferrous iron.
    Ying C; Liu C; Zhang F; Zheng L; Wang X; Yin H; Tan W; Feng X; Lanson B
    Water Res; 2023 Sep; 243():120345. PubMed ID: 37516074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly enhanced oxidation of arsenite at the surface of birnessite in the presence of pyrophosphate and the underlying reaction mechanisms.
    Ying C; Lanson B; Wang C; Wang X; Yin H; Yan Y; Tan W; Liu F; Feng X
    Water Res; 2020 Dec; 187():116420. PubMed ID: 32977187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe
    Zhao J; Wang Q; Fu Y; Peng B; Zhou G
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22998-23008. PubMed ID: 29858998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive transformation of birnessite by aqueous Mn(II).
    Elzinga EJ
    Environ Sci Technol; 2011 Aug; 45(15):6366-72. PubMed ID: 21675764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH.
    Karimian N; Hockmann K; Planer-Friedrich B; Johnston SG; Burton ED
    Environ Sci Technol; 2021 Jul; 55(14):9854-9863. PubMed ID: 34228928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pH on the reductive transformation of birnessite by aqueous Mn(II).
    Lefkowitz JP; Rouff AA; Elzinga EJ
    Environ Sci Technol; 2013 Sep; 47(18):10364-71. PubMed ID: 23875781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of ciprofloxacin from water by birnessite.
    Jiang WT; Chang PH; Wang YS; Tsai Y; Jean JS; Li Z; Krukowski K
    J Hazard Mater; 2013 Apr; 250-251():362-9. PubMed ID: 23474410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism.
    Cheng Y; Zhang S; Huang T; Li Y
    Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of reduced daughter products from 2,4-dinitroanisole (DNAN) by Mn(IV) and Fe(III) oxides.
    Khatiwada R; Olivares C; Abrell L; Root RA; Sierra-Alvarez R; Field JA; Chorover J
    Chemosphere; 2018 Jun; 201():790-798. PubMed ID: 29550573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces.
    Yin H; Sun J; Yan X; Yang X; Feng X; Tan W; Qiu G; Zhang J; Ginder-Vogel M; Liu F
    Environ Pollut; 2020 Jan; 256():113462. PubMed ID: 31706772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a novel Fe-Mn binary oxide-modified lava adsorbent and its effect on ammonium removal from aqueous solutions.
    Zhao Z; He S; Li F; Jin Y; Khan S; Liu F; Liang X
    Water Environ Res; 2020 Jun; 92(6):850-864. PubMed ID: 31737966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.
    Zhao H; Zhu M; Li W; Elzinga EJ; Villalobos M; Liu F; Zhang J; Feng X; Sparks DL
    Environ Sci Technol; 2016 Feb; 50(4):1750-8. PubMed ID: 26745815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Adsorption Controls Stability of Layered Manganese Oxides.
    Yang P; Post JE; Wang Q; Xu W; Geiss R; McCurdy PR; Zhu M
    Environ Sci Technol; 2019 Jul; 53(13):7453-7462. PubMed ID: 31150220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.