These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32920688)

  • 21. Enhanced removal of antimony by acid birnessite with doped iron ions: Companied by the structural transformation.
    Lu H; Zhang W; Tao L; Liu F; Zhang J
    Chemosphere; 2019 Jul; 226():834-840. PubMed ID: 30974376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The adsorption mechanism of Zn
    Shi DD; Wang SZ; Li Y; Di YW; Wang T
    Environ Technol; 2022 Feb; 43(6):927-934. PubMed ID: 32791892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimony oxidation and sorption behavior on birnessites with different properties (δ-MnO
    Sun Q; Cui PX; Liu C; Peng SM; Alves ME; Zhou DM; Shi ZQ; Wang YJ
    Environ Pollut; 2019 Mar; 246():990-998. PubMed ID: 31159148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III).
    Yin H; Liu F; Feng X; Liu M; Tan W; Qiu G
    J Hazard Mater; 2011 Nov; 196():318-26. PubMed ID: 21963172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe-Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid.
    Zhang G; Liu H; Qu J; Jefferson W
    J Colloid Interface Sci; 2012 Jan; 366(1):141-146. PubMed ID: 22014399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of ammonium ion from water by Na-rich birnessite: Performance and mechanisms.
    Cheng Y; Huang T; Shi X; Wen G; Sun Y
    J Environ Sci (China); 2017 Jul; 57():402-410. PubMed ID: 28647261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems.
    Bai Y; Yang T; Liang J; Qu J
    Water Res; 2016 Jul; 98():119-27. PubMed ID: 27088246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of Pb
    Zhang L; Liu X; Huang X; Wang W; Sun P; Li Y
    Environ Technol; 2019 Jun; 40(14):1853-1861. PubMed ID: 29364052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrothermal synthesis of hierarchically structured birnessite-type MnO
    Jung KW; Lee SY; Lee YJ
    Bioresour Technol; 2018 Jul; 260():204-212. PubMed ID: 29626779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Characteristic of Nitrate Adsorption in Aqueous Solution by Iron and Manganese Oxide/Biochar Composites].
    Zheng XQ; Wei AL; Zhang YX; Shi LY; Zhang X
    Huan Jing Ke Xue; 2018 Mar; 39(3):1220-1232. PubMed ID: 29965467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cd(II) retention and remobilization on δ-MnO
    Sun Q; Cui PX; Zhu M; Fan TT; Ata-Ul-Karim ST; Gu JH; Wu S; Zhou DM; Wang YJ
    Environ Int; 2019 Sep; 130():104932. PubMed ID: 31238266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Characterization of Pb2+ adsorption on the surface of birnessite treatment with Na4P2O7 at different pH and the study on the distribution of Mn(III) in the birnessite].
    Zhao W; Yin H; Liu F; Feng XH; Tan WF
    Huan Jing Ke Xue; 2011 Aug; 32(8):2477-84. PubMed ID: 22619981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.
    Shan C; Tong M
    Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of V(IV) by Birnessite: Kinetics and Surface Complexation.
    Abernathy MJ; Schaefer MV; Vessey CJ; Liu H; Ying SC
    Environ Sci Technol; 2021 Sep; 55(17):11703-11712. PubMed ID: 34488349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenite oxidation and arsenic adsorption on birnessite in the absence and the presence of citrate or EDTA.
    Liang M; Guo H; Xiu W
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):43769-43785. PubMed ID: 32740840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].
    Wang Y; Tan WF; Feng XH; Qiu GH; Liu F
    Huan Jing Ke Xue; 2011 Oct; 32(10):3128-36. PubMed ID: 22279934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel solution for hydroxylated PAHs removal by oxidative coupling reaction using Mn oxide.
    Kang KH; Lim DM; Shin HS
    Water Sci Technol; 2008; 58(1):171-8. PubMed ID: 18653951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption properties of kaolinite-based nanocomposites for Fe and Mn pollutants from aqueous solutions and raw ground water: kinetics and equilibrium studies.
    Shaban M; Hassouna MEM; Nasief FM; AbuKhadra MR
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22954-22966. PubMed ID: 28819905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface.
    Power LE; Arai Y; Sparks DL
    Environ Sci Technol; 2005 Jan; 39(1):181-7. PubMed ID: 15667093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural Transformation of Birnessite by Fulvic Acid under Anoxic Conditions.
    Wang Q; Yang P; Zhu M
    Environ Sci Technol; 2018 Feb; 52(4):1844-1853. PubMed ID: 29356523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.