These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32920836)

  • 1. A simplified PDMS microfluidic device with a built-in suction actuator for rapid production of monodisperse water-in-oil droplets.
    Nakatani M; Tanaka Y; Okayama S; Hashimoto M
    Electrophoresis; 2020 Dec; 41(24):2114-2121. PubMed ID: 32920836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO
    Ogo A; Okayama S; Nakatani M; Hashimoto M
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.
    Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M
    Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR.
    Tanaka H; Yamamoto S; Nakamura A; Nakashoji Y; Okura N; Nakamoto N; Tsukagoshi K; Hashimoto M
    Anal Chem; 2015 Apr; 87(8):4134-43. PubMed ID: 25822401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A "place n play" modular pump for portable microfluidic applications.
    Li G; Luo Y; Chen Q; Liao L; Zhao J
    Biomicrofluidics; 2012 Mar; 6(1):14118-1411816. PubMed ID: 22685507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production.
    Feng C; Takahashi K; Zhu J
    Front Bioeng Biotechnol; 2022; 10():891213. PubMed ID: 35519623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Integrated Centrifugal Degassed PDMS-Based Microfluidic Device for Serial Dilution.
    Wang A; Boroujeni SM; Schneider PJ; Christie LB; Mancuso KA; Andreadis ST; Oh KW
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33922553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Production of Monodisperse Functional Microspheres by Multilayer Parallelization of High Aspect Ratio Microfluidic Channels.
    Chung CHY; Cui B; Song R; Liu X; Xu X; Yao S
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31509956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications.
    Li L; Yan Z; Jin M; You X; Xie S; Liu Z; van den Berg A; Eijkel JCT; Shui L
    ACS Appl Mater Interfaces; 2019 May; 11(18):16934-16943. PubMed ID: 30983312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation.
    Ji H; Lee J; Park J; Kim J; Kim HS; Cho Y
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of double emulsion micro-droplets in a microfluidic device using a partially hydrophilic-hydrophobic surface.
    Kamnerdsook A; Juntasaro E; Khemthongcharoen N; Chanasakulniyom M; Sripumkhai W; Pattamang P; Promptmas C; Atthi N; Jeamsaksiri W
    RSC Adv; 2021 Oct; 11(56):35653-35662. PubMed ID: 35493190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip.
    Kim SJ; Song YA; Skipper PL; Han J
    Anal Chem; 2006 Dec; 78(23):8011-9. PubMed ID: 17134134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convenient microfluidic cartridge for single-molecule droplet PCR using common laboratory equipment.
    Takahara H; Matsushita H; Inui E; Ochiai M; Hashimoto M
    Anal Methods; 2021 Mar; 13(8):974-985. PubMed ID: 33533381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hand-held, power-free microfluidic device for monodisperse droplet generation.
    Chen IJ; Wu T; Hu S
    MethodsX; 2018; 5():984-990. PubMed ID: 30197867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid monodisperse microencapsulation of single cells.
    Zhang X; Ohta AT; Garmire D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6518-21. PubMed ID: 21096496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds.
    Thakur R; Fridman GY
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition.
    Trantidou T; Elani Y; Parsons E; Ces O
    Microsyst Nanoeng; 2017; 3():16091. PubMed ID: 31057854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.