BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 32920952)

  • 1. Comparison of antifungal and cytotoxicity activities of titanium dioxide and zinc oxide nanoparticles with amphotericin B against different Candida species: In vitro evaluation.
    Ahmadpour Kermani S; Salari S; Ghasemi Nejad Almani P
    J Clin Lab Anal; 2021 Jan; 35(1):e23577. PubMed ID: 32920952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro evaluation of antifungal and cytotoxic activities as also the therapeutic safety of the oxidized form of amphotericin B.
    Klimek K; Strubińska J; Czernel G; Ginalska G; Gagoś M
    Chem Biol Interact; 2016 Aug; 256():47-54. PubMed ID: 27350166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO, TiO2 and Ag nanoparticles impact against some species of pathogenic bacteria and yeast.
    Mohammed AK; Salh KK; Ali FA
    Cell Mol Biol (Noisy-le-grand); 2021 Nov; 67(3):24-34. PubMed ID: 34933736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of cytogenotoxicity and oxidative stress parameters in male Swiss mice co-exposed to titanium dioxide and zinc oxide nanoparticles.
    Fadoju O; Ogunsuyi O; Akanni O; Alabi O; Alimba C; Adaramoye O; Cambier S; Eswara S; Gutleb AC; Bakare A
    Environ Toxicol Pharmacol; 2019 Aug; 70():103204. PubMed ID: 31200344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo.
    Tang X; Zhu H; Sun L; Hou W; Cai S; Zhang R; Liu F
    Int J Nanomedicine; 2014; 9():5403-13. PubMed ID: 25473279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B.
    Ludwig DB; de Camargo LEA; Khalil NM; Auler ME; Mainardes RM
    Mycopathologia; 2018 Aug; 183(4):659-668. PubMed ID: 29497926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invitro antifungal susceptibilities of Candida species to liposomal amphotericin B, determined using CLSI broth microdilution, and amphotericin B deoxycholate, measured using the Etest.
    Lovero G; Giglio O; Rutigliano S; Diella G; Caggiano G; Montagna MT
    J Med Microbiol; 2017 Mar; 66(2):213-216. PubMed ID: 27959780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In vitro amphotericin B susceptibility of korean bloodstream yeast isolates assessed by the CLSI broth microdilution method, Etest, and Minimum fungicidal concentration test].
    Park JY; Shin JH; Uh Y; Kim EC; Kee SJ; Kim SH; Shin MG; Suh SP; Ryang DW
    Korean J Lab Med; 2008 Oct; 28(5):346-52. PubMed ID: 18971615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotoxic effects of zinc oxide nanoparticles in nasal mucosa cells are antagonized by titanium dioxide nanoparticles.
    Hackenberg S; Scherzed A; Zapp A; Radeloff K; Ginzkey C; Gehrke T; Ickrath P; Kleinsasser N
    Mutat Res Genet Toxicol Environ Mutagen; 2017 Apr; 816-817():32-37. PubMed ID: 28464994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activities of antifungal agents against yeasts and filamentous fungi: assessment according to the methodology of the European Committee on Antimicrobial Susceptibility Testing.
    Lass-Flörl C; Mayr A; Perkhofer S; Hinterberger G; Hausdorfer J; Speth C; Fille M
    Antimicrob Agents Chemother; 2008 Oct; 52(10):3637-41. PubMed ID: 18694949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-soluble amphotericin B-polyvinylpyrrolidone complexes with maintained antifungal activity against Candida spp. and Aspergillus spp. and reduced haemolytic and cytotoxic effects.
    Charvalos E; Tzatzarakis MN; Van Bambeke F; Tulkens PM; Tsatsakis AM; Tzanakakis GN; Mingeot-Leclercq MP
    J Antimicrob Chemother; 2006 Feb; 57(2):236-44. PubMed ID: 16361329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and histopathological alterations in male Swiss mice after exposure to titanium dioxide (anatase) and zinc oxide nanoparticles and their binary mixture.
    Ogunsuyi O; Ogunsuyi O; Akanni O; Alabi O; Alimba C; Adaramoye O; Cambier S; Eswara S; Gutleb AC; Bakare A
    Drug Chem Toxicol; 2022 May; 45(3):1188-1213. PubMed ID: 32865034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of amphotericin B killing kinetics against seven Candida species.
    Cantón E; Pemán J; Gobernado M; Viudes A; Espinel-Ingroff A
    Antimicrob Agents Chemother; 2004 Jul; 48(7):2477-82. PubMed ID: 15215097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey of amphotericin B susceptibility of Candida clinical isolates determined by Etest.
    Chiu YS; Chang SC; Hsueh PR; Wang JL; Sun HY; Chen YC
    J Microbiol Immunol Infect; 2006 Aug; 39(4):335-41. PubMed ID: 16926981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative in vitro antifungal susceptibility activity of amphotericin B versus amphotericin B methyl ester against Candida albicans ocular isolates.
    Thanathanee O; Miller D; Ringel DM; Schaffner CP; Alfonso EC; O'Brien TP
    J Ocul Pharmacol Ther; 2012 Dec; 28(6):589-92. PubMed ID: 22788845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal effects of ZnO, TiO
    Najibi Ilkhechi N; Mozammel M; Yari Khosroushahi A
    Pestic Biochem Physiol; 2021 Jul; 176():104869. PubMed ID: 34119214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro activity of a new echinocandin, LY303366, and comparison with fluconazole, flucytosine and amphotericin B against Candida species.
    Moore CB; Oakley KL; Denning DW
    Clin Microbiol Infect; 2001 Jan; 7(1):11-6. PubMed ID: 11284