BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32921165)

  • 1. Prediction of transcription factors binding events based on epigenetic modifications in different human cells.
    Huang Y; Zhou D; Wang Y; Zhang X; Su M; Wang C; Sun Z; Jiang Q; Sun B; Zhang Y
    Epigenomics; 2020 Aug; 12(16):1443-1456. PubMed ID: 32921165
    [No Abstract]   [Full Text] [Related]  

  • 2. Modeling the relationship of epigenetic modifications to transcription factor binding.
    Liu L; Jin G; Zhou X
    Nucleic Acids Res; 2015 Apr; 43(8):3873-85. PubMed ID: 25820421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling co-occupancy of transcription factors using chromatin features.
    Liu L; Zhao W; Zhou X
    Nucleic Acids Res; 2016 Mar; 44(5):e49. PubMed ID: 26590261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Base-resolution methylation patterns accurately predict transcription factor bindings in vivo.
    Xu T; Li B; Zhao M; Szulwach KE; Street RC; Lin L; Yao B; Zhang F; Jin P; Wu H; Qin ZS
    Nucleic Acids Res; 2015 Mar; 43(5):2757-66. PubMed ID: 25722376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Methods and Correlation of Exon-skipping Events with Splicing, Transcription, and Epigenetic Factors.
    Wang J; Ye Z; Huang TH; Shi H; Jin VX
    Methods Mol Biol; 2017; 1513():163-170. PubMed ID: 27807836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence and chromatin determinants of cell-type-specific transcription factor binding.
    Arvey A; Agius P; Noble WS; Leslie C
    Genome Res; 2012 Sep; 22(9):1723-34. PubMed ID: 22955984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A regression analysis of gene expression in ES cells reveals two gene classes that are significantly different in epigenetic patterns.
    Park SJ; Nakai K
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S50. PubMed ID: 21342583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the relative relationship of transcription factor binding and histone modifications to gene expression levels in mouse embryonic stem cells.
    Cheng C; Gerstein M
    Nucleic Acids Res; 2012 Jan; 40(2):553-68. PubMed ID: 21926158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning model to identify gene expression level using cobinding transcription factor signals.
    Zhang L; Yang Y; Chai L; Li Q; Liu J; Lin H; Liu L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between different epigenetic modifications and mechanisms.
    Murr R
    Adv Genet; 2010; 70():101-41. PubMed ID: 20920747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation.
    Almeida LO; Neto MPC; Sousa LO; Tannous MA; Curti C; Leopoldino AM
    Oncotarget; 2017 Apr; 8(16):26802-26818. PubMed ID: 28460463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of transcription factors to DNA methylation.
    Héberlé É; Bardet AF
    Essays Biochem; 2019 Dec; 63(6):727-741. PubMed ID: 31755929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using methylation data to improve transcription factor binding prediction.
    Morgan D; DeMeo DL; Glass K
    Epigenetics; 2024 Dec; 19(1):2309826. PubMed ID: 38300850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the transcriptional regulation of cervix cancer using microarray gene expression data and promoter sequence analysis of a curated gene set.
    Srivastava P; Mangal M; Agarwal SM
    Gene; 2014 Feb; 535(2):233-8. PubMed ID: 24291025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts.
    Stefanowicz D; Ullah J; Lee K; Shaheen F; Olumese E; Fishbane N; Koo HK; Hallstrand TS; Knight DA; Hackett TL
    BMC Pulm Med; 2017 Jan; 17(1):24. PubMed ID: 28137284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding transcriptional regulation by integrative analysis of transcription factor binding data.
    Cheng C; Alexander R; Min R; Leng J; Yip KY; Rozowsky J; Yan KK; Dong X; Djebali S; Ruan Y; Davis CA; Carninci P; Lassman T; Gingeras TR; Guigó R; Birney E; Weng Z; Snyder M; Gerstein M
    Genome Res; 2012 Sep; 22(9):1658-67. PubMed ID: 22955978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of transposable element derived enhancers using chromatin modification profiles.
    Huda A; Tyagi E; Mariño-Ramírez L; Bowen NJ; Jjingo D; Jordan IK
    PLoS One; 2011; 6(11):e27513. PubMed ID: 22087331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.