These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32921241)

  • 1. Study on the characteristics of magneto acoustic emission for mild steel fatigue.
    Shen G; Shen Y
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2182):20190586. PubMed ID: 32921241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves.
    Longo R; Vanlanduit S; Vanherzeele J; Guillaume P
    Ultrasonics; 2010 Jan; 50(1):76-80. PubMed ID: 19732928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.
    Strantza M; Aggelis DG; de Baere D; Guillaume P; van Hemelrijck D
    Sensors (Basel); 2015 Oct; 15(10):26709-25. PubMed ID: 26506349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue Crack Propagation Estimation Based on Direct Strain Measurement during a Full-Scale Fatigue Test.
    Reymer P; Leski A; Dziendzikowski M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.
    Patankar R
    Risk Anal; 2003 Oct; 23(5):929-36. PubMed ID: 12969408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Stress Intensity Factor on Rail Fatigue Crack Propagation by Finite Element Method.
    Gao R; Liu M; Wang B; Wang Y; Shao W
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic emission and fatigue damage induced in plasma-sprayed hydroxyapatite coating layers.
    Laonapakul T; Otsuka Y; Nimkerdphol AR; Mutoh Y
    J Mech Behav Biomed Mater; 2012 Apr; 8():123-33. PubMed ID: 22402159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physic perspective fusion of electromagnetic acoustic transducer and pulsed eddy current testing in non-destructive testing system.
    Guo W; Gao B; Yun Tian G; Si D
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2182):20190608. PubMed ID: 32921232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release during Fatigue-Crack Growth.
    Joseph R; Mei H; Migot A; Giurgiutiu V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Acoustic Modeling and Measurements during the Fatigue Process in Metals.
    Lyu W; Wu X; Xu W
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation of electrical conductivity inside stress corrosion crack with electromagnetic NDE methods.
    Cai W; Jomdecha C; Zhao Y; Wang L; Xie S; Chen Z
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2182):20190589. PubMed ID: 32921234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Evaluation of a Carbon Nanotube Sensor for Fatigue Crack Monitoring of Metal Structures.
    Ahmed S; Schumacher T; Thostenson ET; McConnell J
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of advances in microwave and millimetre-wave NDT&E: principles and applications.
    Brinker K; Dvorsky M; Al Qaseer MT; Zoughi R
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2182):20190585. PubMed ID: 32921242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel ultrasonic non-destructive testing methodology to monitor fatigue crack growth in compact tension specimens.
    Abraham ST; Babu MN; Venkatraman B
    Rev Sci Instrum; 2023 Mar; 94(3):035108. PubMed ID: 37012745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty Modeling of Fatigue Crack Growth and Probabilistic Life Prediction for Welded Joints of Nuclear Stainless Steel.
    Chang H; Shen M; Yang X; Hou J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Use of the Acoustic Emission Method to Identify Crack Growth in 40CrMo Steel.
    Krampikowska A; Pała R; Dzioba I; Świt G
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31277224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Investigation of Acoustic Emission Waveform Parameters from Crack Opening in a Rail Section Using Clustering Algorithms and Advanced Signal Processing.
    Mahajan H; Banerjee S
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Acoustic Emission and Digital Image Correlation for Early Detection and Measurement of Fatigue Cracks in Rails and Train Parts under Dynamic Loading.
    Machikhin A; Poroykov A; Bardakov V; Marchenkov A; Zhgut D; Sharikova M; Barat V; Meleshko N; Kren A
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.
    Amura M; Meo M; Amerini F
    J Acoust Soc Am; 2011 Oct; 130(4):1829-37. PubMed ID: 21973336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.