BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 32921395)

  • 1. Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds.
    Guo W; Xu Q
    J Pharmacol Sci; 2020 Nov; 144(3):139-146. PubMed ID: 32921395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse driving forces underlie the invariant occurrence of the T42A, E139D, I282V and T468M SHP2 amino acid substitutions causing Noonan and LEOPARD syndromes.
    Martinelli S; Torreri P; Tinti M; Stella L; Bocchinfuso G; Flex E; Grottesi A; Ceccarini M; Palleschi A; Cesareni G; Castagnoli L; Petrucci TC; Gelb BD; Tartaglia M
    Hum Mol Genet; 2008 Jul; 17(13):2018-29. PubMed ID: 18372317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity.
    Tajan M; Batut A; Cadoudal T; Deleruyelle S; Le Gonidec S; Saint Laurent C; Vomscheid M; Wanecq E; Tréguer K; De Rocca Serra-Nédélec A; Vinel C; Marques MA; Pozzo J; Kunduzova O; Salles JP; Tauber M; Raynal P; Cavé H; Edouard T; Valet P; Yart A
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):E4494-503. PubMed ID: 25288766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative regulation of Stat3 by activating PTPN11 mutants contributes to the pathogenesis of Noonan syndrome and juvenile myelomonocytic leukemia.
    Zhang W; Chan RJ; Chen H; Yang Z; He Y; Zhang X; Luo Y; Yin F; Moh A; Miller LC; Payne RM; Zhang ZY; Fu XY; Shou W
    J Biol Chem; 2009 Aug; 284(33):22353-22363. PubMed ID: 19509418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine phosphatase
    Chen X; Keller SJ; Hafner P; Alrawashdeh AY; Avery TY; Norona J; Zhou J; Ruess DA
    Front Immunol; 2024; 15():1340726. PubMed ID: 38504984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting SHP2 phosphatase in hematological malignancies.
    Kanumuri R; Kumar Pasupuleti S; Burns SS; Ramdas B; Kapur R
    Expert Opin Ther Targets; 2022 Apr; 26(4):319-332. PubMed ID: 35503226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noonan Syndrome-Associated SHP2 Dephosphorylates GluN2B to Regulate NMDA Receptor Function.
    Levy AD; Xiao X; Shaw JE; Sudarsana Devi SP; Katrancha SM; Bennett AM; Greer CA; Howe JR; Machida K; Koleske AJ
    Cell Rep; 2018 Aug; 24(6):1523-1535. PubMed ID: 30089263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melanoma and LEOPARD Syndrome: Understanding the Role of PTPN11 Mutations in Melanomagenesis.
    Palacios-Diaz RD; Pozuelo-Ruiz M; De Unamuno-Bustos B; Llavador-Ros M; Botella-Estrada R
    Acta Derm Venereol; 2024 Jan; 104():adv14720. PubMed ID: 38189222
    [No Abstract]   [Full Text] [Related]  

  • 9. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment.
    Sodir NM; Pathria G; Adamkewicz JI; Kelley EH; Sudhamsu J; Merchant M; Chiarle R; Maddalo D
    Cancer Discov; 2023 Nov; 13(11):2339-2355. PubMed ID: 37682219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Tyrosine Phosphatase SHP-2 (PTPN11) in Hematopoiesis and Leukemogenesis.
    Liu X; Qu CK
    J Signal Transduct; 2011; 2011():195239. PubMed ID: 21799948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric Inhibitors of SHP2: An Updated Patent Review (2015-2020).
    Wu J; Zhang H; Zhao G; Wang R
    Curr Med Chem; 2021; 28(19):3825-3842. PubMed ID: 32988341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies.
    Song Z; Wang M; Ge Y; Chen XP; Xu Z; Sun Y; Xiong XF
    Acta Pharm Sin B; 2021 Jan; 11(1):13-29. PubMed ID: 33532178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability
    Yuan Y; Fan Y; Gao Z; Sun X; Zhang H; Wang Z; Cui Y; Song W; Wang Z; Zhang F; Niu R
    Cancer Biol Med; 2020 Aug; 17(3):707-725. PubMed ID: 32944401
    [No Abstract]   [Full Text] [Related]  

  • 14. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review.
    Tripathi RKP; Ayyannan SR
    Chem Biol Drug Des; 2021 Mar; 97(3):721-773. PubMed ID: 33191603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An allosteric interaction controls the activation mechanism of SHP2 tyrosine phosphatase.
    Anselmi M; Hub JS
    Sci Rep; 2020 Oct; 10(1):18530. PubMed ID: 33116231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling.
    Fedele C; Li S; Teng KW; Foster CJR; Peng D; Ran H; Mita P; Geer MJ; Hattori T; Koide A; Wang Y; Tang KH; Leinwand J; Wang W; Diskin B; Deng J; Chen T; Dolgalev I; Ozerdem U; Miller G; Koide S; Wong KK; Neel BG
    J Exp Med; 2021 Jan; 218(1):. PubMed ID: 33045063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric SHP2 inhibitors in cancer: Targeting the intersection of RAS, resistance, and the immune microenvironment.
    Kerr DL; Haderk F; Bivona TG
    Curr Opin Chem Biol; 2021 Jun; 62():1-12. PubMed ID: 33418513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting SHP2 as a therapeutic strategy for inflammatory diseases.
    Liu Y; Yang X; Wang Y; Yang Y; Sun D; Li H; Chen L
    Eur J Med Chem; 2021 Mar; 214():113264. PubMed ID: 33582386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SHP2 Nuclear/Cytoplasmic Trafficking in Granulosa Cells Is Essential for Oocyte Meiotic Resumption and Maturation.
    Idrees M; Kumar V; Joo MD; Ali N; Lee KW; Kong IK
    Front Cell Dev Biol; 2020; 8():611503. PubMed ID: 33553147
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.