BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32921411)

  • 1. N-glycosylation of Siglec-15 decreases its lysosome-dependent degradation and promotes its transportation to the cell membrane.
    Chen X; Dang X; Song J; Wang G; Liu C; Cui L; Huang Z
    Biochem Biophys Res Commun; 2020 Nov; 533(1):77-82. PubMed ID: 32921411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Siglec-15 promotes the migration of liver cancer cells by repressing lysosomal degradation of CD44.
    Liu W; Ji Z; Wu B; Huang S; Chen Q; Chen X; Wei Y; Jiang J
    FEBS Lett; 2021 Sep; 595(17):2290-2302. PubMed ID: 34328657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy.
    Wang J; Sun J; Liu LN; Flies DB; Nie X; Toki M; Zhang J; Song C; Zarr M; Zhou X; Han X; Archer KA; O'Neill T; Herbst RS; Boto AN; Sanmamed MF; Langermann S; Rimm DL; Chen L
    Nat Med; 2019 Apr; 25(4):656-666. PubMed ID: 30833750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Siglec-15 as multifunctional molecule involved in osteoclast differentiation, cancer immunity and microbial infection.
    Huang R; Zheng J; Shao Y; Zhu L; Yang T
    Prog Biophys Mol Biol; 2023 Jan; 177():34-41. PubMed ID: 36265694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosylation affects the stability and subcellular distribution of human PAT1 protein.
    Luo H; Zhao L; Ji X; Zhang X; Jin Y; Liu W
    FEBS Lett; 2017 Feb; 591(4):613-623. PubMed ID: 28117901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12.
    Kameda Y; Takahata M; Komatsu M; Mikuni S; Hatakeyama S; Shimizu T; Angata T; Kinjo M; Minami A; Iwasaki N
    J Bone Miner Res; 2013 Dec; 28(12):2463-75. PubMed ID: 23677868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunopositivity for Siglec-15 in gastric cancer and its association with clinical and pathological parameters.
    Quirino MWL; Pereira MC; Deodato de Souza MF; Pitta IDR; Da Silva Filho AF; Albuquerque MSS; Albuquerque APB; Martins MR; Pitta MGDR; Rêgo MJBM
    Eur J Histochem; 2021 Mar; 65(1):. PubMed ID: 33666065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway.
    Takamiya R; Ohtsubo K; Takamatsu S; Taniguchi N; Angata T
    Glycobiology; 2013 Feb; 23(2):178-87. PubMed ID: 23035012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-LYTACs for Degradation of Membrane Proteins and Inhibition of CD24/Siglec-10 Signaling Pathway.
    Wang K; Yu A; Liu K; Feng C; Hou Y; Chen J; Ma S; Huang L; Dai X
    Adv Sci (Weinh); 2023 May; 10(13):e2300288. PubMed ID: 36866919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The diverse functions of Siglec-15 in bone remodeling and antitumor responses.
    Kang FB; Chen W; Wang L; Zhang YZ
    Pharmacol Res; 2020 May; 155():104728. PubMed ID: 32112821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NCU-G1 is a highly glycosylated integral membrane protein of the lysosome.
    Schieweck O; Damme M; Schröder B; Hasilik A; Schmidt B; Lübke T
    Biochem J; 2009 Jul; 422(1):83-90. PubMed ID: 19489740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TM7SF1 (GPR137B): a novel lysosome integral membrane protein.
    Gao J; Xia L; Lu M; Zhang B; Chen Y; Xu R; Wang L
    Mol Biol Rep; 2012 Sep; 39(9):8883-9. PubMed ID: 22729905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis.
    Kameda Y; Takahata M; Mikuni S; Shimizu T; Hamano H; Angata T; Hatakeyama S; Kinjo M; Iwasaki N
    Bone; 2015 Feb; 71():217-26. PubMed ID: 25460183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution.
    Angata T; Tabuchi Y; Nakamura K; Nakamura M
    Glycobiology; 2007 Aug; 17(8):838-46. PubMed ID: 17483134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lysosome Pathway Degrades CD81 on the Cell Surface by Poly-ubiquitination and Clathrin-Mediated Endocytosis.
    Hosokawa K; Ishimaru H; Watanabe T; Fujimuro M
    Biol Pharm Bull; 2020 Mar; 43(3):540-545. PubMed ID: 31902824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery of endocytosed membrane proteins to the lysosome.
    Pryor PR; Luzio JP
    Biochim Biophys Acta; 2009 Apr; 1793(4):615-24. PubMed ID: 19167432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ocular albinism type 1 gene product is an N-glycoprotein but glycosylation is not required for its subcellular distribution.
    Shen B; Orlow SJ
    Pigment Cell Res; 2001 Dec; 14(6):485-90. PubMed ID: 11775061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation of tetraspanin Tspan-1 at four distinct sites promotes its transition through the endoplasmic reticulum.
    Scholz CJ; Sauer G; Deissler H
    Protein Pept Lett; 2009; 16(10):1244-8. PubMed ID: 19508227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Protein Degradation Mediated by Genetically Engineered Lysosome-Targeting Exosomes.
    Wang T; Sun L; Ren T; Hou M; Long Y; Jiang JH; He J
    Nano Lett; 2023 Oct; 23(20):9571-9578. PubMed ID: 37823825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of the asparagine-linked oligosaccharides on siglec-5, siglec-7 and siglec-8, expressed in a CHO cell line, and their contribution to ligand recognition.
    Freeman S; Birrell HC; D'Alessio K; Erickson-Miller C; Kikly K; Camilleri P
    Eur J Biochem; 2001 Mar; 268(5):1228-37. PubMed ID: 11231274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.