These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 32921447)
1. Influence of dietary fructose supplementation on visceral organ mass, carbohydrase activity, and mRNA expression of genes involved in small intestinal carbohydrate assimilation in neonatal calves. Trotta RJ; Ward AK; Swanson KC J Dairy Sci; 2020 Nov; 103(11):10060-10073. PubMed ID: 32921447 [TBL] [Abstract][Full Text] [Related]
2. Effects of nutrient restriction and melatonin supplementation from mid-to-late gestation on maternal and fetal small intestinal carbohydrase activities in sheep. Trotta RJ; Lemley CO; Vonnahme KA; Swanson KC Domest Anim Endocrinol; 2021 Jan; 74():106555. PubMed ID: 32947201 [TBL] [Abstract][Full Text] [Related]
3. Duodenal Infusions of Starch with Casein or Glutamic Acid Influence Pancreatic and Small Intestinal Carbohydrase Activities in Cattle. Trotta RJ; Sitorski LG; Acharya S; Brake DW; Swanson KC J Nutr; 2020 Apr; 150(4):784-791. PubMed ID: 31875476 [TBL] [Abstract][Full Text] [Related]
4. Effects of Nutrient Restriction During Midgestation to Late Gestation on Maternal and Fetal Postruminal Carbohydrase Activities in Sheep. Trotta RJ; Vasquez-Hidalgo MA; Vonnahme KA; Swanson KC J Anim Sci; 2020 Jan; 98(1):. PubMed ID: 31879771 [TBL] [Abstract][Full Text] [Related]
5. Diet effects on glucose absorption in the small intestine of neonatal calves: importance of intestinal mucosal growth, lactase activity, and glucose transporters. Steinhoff-Wagner J; Zitnan R; Schönhusen U; Pfannkuche H; Hudakova M; Metges CC; Hammon HM J Dairy Sci; 2014 Oct; 97(10):6358-69. PubMed ID: 25108868 [TBL] [Abstract][Full Text] [Related]
6. Influence of dietary forage and feed intake on carbohydrase activities and small intestinal morphology of calves. Kreikemeier KK; Harmon DL; Peters JP; Gross KL; Armendariz CK; Krehbiel CR J Anim Sci; 1990 Sep; 68(9):2916-29. PubMed ID: 1698758 [TBL] [Abstract][Full Text] [Related]
7. Effects of ad libitum milk replacer feeding and butyrate supplementation on the epithelial growth and development of the gastrointestinal tract in Holstein calves. Koch C; Gerbert C; Frieten D; Dusel G; Eder K; Zitnan R; Hammon HM J Dairy Sci; 2019 Sep; 102(9):8513-8526. PubMed ID: 31255268 [TBL] [Abstract][Full Text] [Related]
8. Colostrum insulin supplementation to neonatal Holstein bulls affects small intestinal histomorphology, mRNA expression, and enzymatic activity with minor influences on peripheral metabolism. Hare KS; Wood KM; Mustapha Y; Swanson KC; Steele MA J Dairy Sci; 2023 Jul; 106(7):5054-5073. PubMed ID: 37268570 [TBL] [Abstract][Full Text] [Related]
9. Effect of diet containing phytate and phytase on the activity and messenger ribonucleic acid expression of carbohydrase and transporter in chickens. Liu N; Ru YJ; Li FD; Cowieson AJ J Anim Sci; 2008 Dec; 86(12):3432-9. PubMed ID: 18708594 [TBL] [Abstract][Full Text] [Related]
10. Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves. Górka P; Pietrzak P; Kotunia A; Zabielski R; Kowalski ZM J Dairy Sci; 2014 Feb; 97(2):1026-35. PubMed ID: 24342681 [TBL] [Abstract][Full Text] [Related]
11. Sucrase-isomaltase and hexose transporter gene expressions are coordinately enhanced by dietary fructose in rat jejunum. Kishi K; Tanaka T; Igawa M; Takase S; Goda T J Nutr; 1999 May; 129(5):953-6. PubMed ID: 10222385 [TBL] [Abstract][Full Text] [Related]
12. Effects of extrusion and supplementation of exogenous enzymes to diets containing Chinese storage brown rice on the carbohydrase activity in the digestive tract of piglets. He J; Liu C; Fu C; Li J J Anim Physiol Anim Nutr (Berl); 2010 Apr; 94(2):146-53. PubMed ID: 20465715 [TBL] [Abstract][Full Text] [Related]
13. Is rumen development in newborn calves affected by different liquid feeds and small intestine development? Górka P; Kowalski ZM; Pietrzak P; Kotunia A; Jagusiak W; Zabielski R J Dairy Sci; 2011 Jun; 94(6):3002-13. PubMed ID: 21605770 [TBL] [Abstract][Full Text] [Related]
14. Effects of milk replacer feeding rate and long-term antibiotic inclusion in milk replacer on performance and nutrient digestibility of Holstein dairy calves up to 4 months of age. Dennis TS; Suarez-Mena FX; Hu W; Hill TM; Quigley JD; Schlotterbeck RL J Dairy Sci; 2019 Mar; 102(3):2094-2102. PubMed ID: 30639003 [TBL] [Abstract][Full Text] [Related]
15. Effects of nucleotide supplementation in milk replacer on small intestinal absorptive capacity in dairy calves. Kehoe SI; Heinrichs AJ; Baumrucker CR; Greger DL J Dairy Sci; 2008 Jul; 91(7):2759-70. PubMed ID: 18565934 [TBL] [Abstract][Full Text] [Related]
16. Short communication: Performance, intestinal permeability, and metabolic profile of calves fed a milk replacer supplemented with glutamic acid. Ahangarani MA; Bach A; Bassols A; Vidal M; Valent D; Ruiz-Herrera S; Terré M J Dairy Sci; 2020 Jan; 103(1):433-438. PubMed ID: 31733874 [TBL] [Abstract][Full Text] [Related]
17. Effects of colostrum replacer supplemented with lactoferrin on the blood plasma immunoglobulin G concentration and intestinal absorption of xylose in the neonatal calf. Shea EC; Whitehouse NL; Erickson PS J Anim Sci; 2009 Jun; 87(6):2047-54. PubMed ID: 19286825 [TBL] [Abstract][Full Text] [Related]
18. Effects of feeding unlimited amounts of milk replacer for the first 5 weeks of age on rumen and small intestinal growth and development in dairy calves. Schäff CT; Gruse J; Maciej J; Pfuhl R; Zitnan R; Rajsky M; Hammon HM J Dairy Sci; 2018 Jan; 101(1):783-793. PubMed ID: 29055538 [TBL] [Abstract][Full Text] [Related]
19. Growth performance, nutrient utilization, and health of dairy calves supplemented with condensed whey solubles. Senevirathne ND; Anderson JL; Metzger L J Dairy Sci; 2019 Sep; 102(9):8108-8119. PubMed ID: 31301825 [TBL] [Abstract][Full Text] [Related]