These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32921855)

  • 1. Analysis of Glottal Inverse Filtering in the Presence of Source-Filter Interaction.
    Palaparthi A; Titze IR
    Speech Commun; 2020 Oct; 123():98-108. PubMed ID: 32921855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the peak glottal area affects linear predictive coding-based formant estimates of vowels.
    Birkholz P; Gabriel F; Kürbis S; Echternach M
    J Acoust Soc Am; 2019 Jul; 146(1):223. PubMed ID: 31370636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Glottal Inverse Filtering Algorithms Using a Physiologically Based Articulatory Speech Synthesizer.
    Chien YR; Mehta DD; Guðnason J; Zañartu M; Quatieri TF
    IEEE/ACM Trans Audio Speech Lang Process; 2017 Aug; 25(8):1718-1730. PubMed ID: 34268444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed phase covariance analysis based on constrained linear prediction for glottal inverse filtering.
    Alku P; Magi C; Yrttiaho S; Bäckström T; Story B
    J Acoust Soc Am; 2009 May; 125(5):3289-305. PubMed ID: 19425671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glottal volume velocity waveform characteristics in subjects with and without vocal training, related to gender, sound intensity, fundamental frequency, and age.
    Sulter AM; Wit HP
    J Acoust Soc Am; 1996 Nov; 100(5):3360-73. PubMed ID: 8914317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice Source Variation Between Vowels in Male Opera Singers.
    Sundberg J; Lã FM; Gill BP
    J Voice; 2016 Sep; 30(5):509-17. PubMed ID: 26350698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring and modeling vocal source-tract interaction.
    Childers DG; Wong CF
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):663-71. PubMed ID: 7927387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of Source-Filter Interaction to Specific Vocal Tract Shapes.
    Titze IR; Palaparthi A
    IEEE/ACM Trans Audio Speech Lang Process; 2016 Dec; 24(12):2507-2515. PubMed ID: 35990794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Source-Filter Interaction Regions Based on Electroglottography.
    Palaparthi A; Maxfield L; Titze IR
    J Voice; 2019 May; 33(3):269-276. PubMed ID: 29277351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kalman Filter Implementation of Subglottal Impedance-Based Inverse Filtering to Estimate Glottal Airflow during Phonation.
    Cortés JP; Alzamendi GA; Weinstein AJ; Yuz JI; Espinoza VM; Mehta DD; Hillman RE; Zañartu M
    Appl Sci (Basel); 2022 Jan; 12(1):. PubMed ID: 36313121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow Glottogram and Subglottal Pressure Relationship in Singers and Untrained Voices.
    Sundberg J
    J Voice; 2018 Jan; 32(1):23-31. PubMed ID: 28495328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glottal inverse filtering with the closed-phase covariance analysis utilizing mathematical constraints in modelling of the vocal tract.
    Alku P; Magi C; Bäckström T
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):200-9. PubMed ID: 19415566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glottal Waves via Inverse Filtering of Vowel Sounds.
    Deng H; Ward R; Beddoes M
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7000-3. PubMed ID: 17281886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musical theater and opera singing--why so different? A study of subglottal pressure, voice source, and formant frequency characteristics.
    Björkner E
    J Voice; 2008 Sep; 22(5):533-40. PubMed ID: 17485197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subglottal Impedance-Based Inverse Filtering of Voiced Sounds Using Neck Surface Acceleration.
    Zañartu M; Ho JC; Mehta DD; Hillman RE; Wodicka GR
    IEEE Trans Audio Speech Lang Process; 2013 Sep; 21(9):1929-1939. PubMed ID: 25400531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production.
    Bodaghi D; Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33399816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIM--simultaneous inverse filtering and matching of a glottal flow model for acoustic speech signals.
    Fröhlich M; Michaelis D; Strube HW
    J Acoust Soc Am; 2001 Jul; 110(1):479-88. PubMed ID: 11508972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of the significance of secondary excitations of the vocal tract for vocal intensity.
    Alku P; Vintturi J; Vilkman E
    Folia Phoniatr Logop; 2001; 53(4):185-97. PubMed ID: 11385278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.