BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32922419)

  • 1. Biocontrol of
    Fedele G; Brischetto C; Rossi V
    Front Plant Sci; 2020; 11():1232. PubMed ID: 32922419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocontrol of
    Altieri V; Rossi V; Fedele G
    Plants (Basel); 2023 Sep; 12(19):. PubMed ID: 37836169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Antagonism Toward
    Calvo-Garrido C; Roudet J; Aveline N; Davidou L; Dupin S; Fermaud M
    Front Plant Sci; 2019; 10():105. PubMed ID: 30804972
    [No Abstract]   [Full Text] [Related]  

  • 4. Efficacy of preharvest application of biocontrol agents against gray mold in grapevine.
    Altieri V; Rossi V; Fedele G
    Front Plant Sci; 2023; 14():1154370. PubMed ID: 36993848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of
    Fedele G; González-Domínguez E; Si Ammour M; Languasco L; Rossi V
    Plant Dis; 2020 Mar; 104(3):808-816. PubMed ID: 31944905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype.
    Ciliberti N; Fermaud M; Roudet J; Rossi V
    Phytopathology; 2015 Aug; 105(8):1090-6. PubMed ID: 26218433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental factors affect the activity of biocontrol agents against ochratoxigenic Aspergillus carbonarius on wine grape.
    De Curtis F; de Felice DV; Ianiri G; De Cicco V; Castoria R
    Int J Food Microbiol; 2012 Sep; 159(1):17-24. PubMed ID: 22921968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of
    Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V
    Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards.
    Rotolo C; De Miccolis Angelini RM; Dongiovanni C; Pollastro S; Fumarola G; Di Carolo M; Perrelli D; Natale P; Faretra F
    Pest Manag Sci; 2018 Mar; 74(3):715-725. PubMed ID: 29044981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.
    Wang X; Glawe DA; Kramer E; Weller D; Okubara PA
    Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocontrol of Non-
    Agarbati A; Canonico L; Pecci T; Romanazzi G; Ciani M; Comitini F
    Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.
    Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D
    Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Germination and Establishment of Infection on Grape Berries by Single Airborne Conidia of Botrytis cinerea.
    Coertze S; Holz G; Sadie A
    Plant Dis; 2001 Jun; 85(6):668-677. PubMed ID: 30823037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of LAMP for Assessing
    Si Ammour M; Castaldo E; Fedele G; Rossi V
    Plants (Basel); 2020 Nov; 9(11):. PubMed ID: 33187064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape.
    Parafati L; Vitale A; Restuccia C; Cirvilleri G
    Food Microbiol; 2015 May; 47():85-92. PubMed ID: 25583341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetic acid treatments to keep postharvest quality of "Regina" and "Taloppo" table grapes.
    Venditti T; D'Hallewin G; Dore A; Molinu MG; Fiori P; Angiolino C; Agabbio M
    Commun Agric Appl Biol Sci; 2008; 73(2):265-71. PubMed ID: 19226763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by
    Lovato A; Zenoni S; Tornielli GB; Colombo T; Vandelle E; Polverari A
    Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bee-Vectored
    Iqbal M; Jützeler M; França SC; Wäckers F; Andreasson E; Stenberg JA
    Phytopathology; 2022 Feb; 112(2):232-237. PubMed ID: 34181440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of mathematical modeling and target-based application of biocontrol agents for the control of Botrytis cinerea in vineyards.
    Altieri V; Rossi V; Fedele G
    Pest Manag Sci; 2024 Apr; ():. PubMed ID: 38634563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine.
    Del Pilar Martínez-Diz M; Díaz-Losada E; Andrés-Sodupe M; Bujanda R; Maldonado-González MM; Ojeda S; Yacoub A; Rey P; Gramaje D
    Pest Manag Sci; 2021 Feb; 77(2):697-708. PubMed ID: 32841479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.