These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32922459)

  • 1. Validity of accelerometry for predicting physical activity and sedentary time in ambulatory children and young adults with cerebral palsy.
    Xing R; Huang WY; Sit CH
    J Exerc Sci Fit; 2021 Jan; 19(1):19-24. PubMed ID: 32922459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of accelerometer cut points for predicting activity intensity in youth.
    Trost SG; Loprinzi PD; Moore R; Pfeiffer KA
    Med Sci Sports Exerc; 2011 Jul; 43(7):1360-8. PubMed ID: 21131873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive validity and classification accuracy of ActiGraph energy expenditure equations and cut-points in young children.
    Janssen X; Cliff DP; Reilly JJ; Hinkley T; Jones RA; Batterham M; Ekelund U; Brage S; Okely AD
    PLoS One; 2013; 8(11):e79124. PubMed ID: 24244433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of accelerometry in ambulatory children and adolescents with cerebral palsy.
    Clanchy KM; Tweedy SM; Boyd RN; Trost SG
    Eur J Appl Physiol; 2011 Dec; 111(12):2951-9. PubMed ID: 21442163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of accelerometer regression models in predicting energy expenditure and METs in children and youth.
    Alhassan S; Lyden K; Howe C; Kozey Keadle S; Nwaokelemeh O; Freedson PS
    Pediatr Exerc Sci; 2012 Nov; 24(4):519-36. PubMed ID: 23196761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and Determination of Physical Activity Intensity GT3X+ Cut-Points in Children and Adolescents with Physical Disabilities: Preliminary Results in a Cerebral Palsy Population.
    Matey-Rodríguez C; López-Ortiz S; Peñín-Grandes S; Pinto-Fraga J; Valenzuela PL; Pico M; Fiuza-Luces C; Lista S; Lucia A; Santos-Lozano A
    Children (Basel); 2023 Feb; 10(3):. PubMed ID: 36980034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of ActiGraph child-specific equations during various physical activities.
    Crouter SE; Horton M; Bassett DR
    Med Sci Sports Exerc; 2013 Jul; 45(7):1403-9. PubMed ID: 23439413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of energy expenditure and physical activity in preschoolers.
    Butte NF; Wong WW; Lee JS; Adolph AL; Puyau MR; Zakeri IF
    Med Sci Sports Exerc; 2014 Jun; 46(6):1216-26. PubMed ID: 24195866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-validation of Actigraph derived accelerometer cut-points for assessment of sedentary behaviour and physical activity in children aged 8-11 years.
    Duncan MJ; Eyre ELJ; Cox V; Roscoe CMP; Faghy MA; Tallis J; Dobell A
    Acta Paediatr; 2020 Sep; 109(9):1825-1830. PubMed ID: 31984545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the activPAL accelerometer for physical activity and energy expenditure estimation in a semi-structured setting.
    Montoye AHK; Pivarnik JM; Mudd LM; Biswas S; Pfeiffer KA
    J Sci Med Sport; 2017 Nov; 20(11):1003-1007. PubMed ID: 28483558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing ActiGraph equations for estimating energy expenditure in older adults.
    Aguilar-Farias N; Peeters GMEEG; Brychta RJ; Chen KY; Brown WJ
    J Sports Sci; 2019 Jan; 37(2):188-195. PubMed ID: 29912666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating energy expenditure using accelerometers.
    Crouter SE; Churilla JR; Bassett DR
    Eur J Appl Physiol; 2006 Dec; 98(6):601-12. PubMed ID: 17058102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of ActiGraph 2-regression model, Matthews cut-points, and NHANES cut-points for assessing free-living physical activity.
    Crouter SE; DellaValle DM; Haas JD; Frongillo EA; Bassett DR
    J Phys Act Health; 2013 May; 10(4):504-14. PubMed ID: 22975460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Kenz Lifecorder EX and ActiGraph accelerometers in 10-yr-old children.
    McClain JJ; Sisson SB; Washington TL; Craig CL; Tudor-Locke C
    Med Sci Sports Exerc; 2007 Apr; 39(4):630-8. PubMed ID: 17414800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decision Trees for Detection of Activity Intensity in Youth with Cerebral Palsy.
    Trost SG; Fragala-Pinkham M; Lennon N; O'Neil ME
    Med Sci Sports Exerc; 2016 May; 48(5):958-66. PubMed ID: 26673127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Children's physical activity and sedentary time compared using assessments of accelerometry counts and muscle activity level.
    Gao Y; Melin M; Mäkäräinen K; Rantalainen T; Pesola AJ; Laukkanen A; Sääkslahti A; Finni T
    PeerJ; 2018; 6():e5437. PubMed ID: 30155355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability of RT3 accelerometer cut points to detect physical activity intensity in ambulatory children with cerebral palsy.
    Ryan J; Walsh M; Gormley J
    Adapt Phys Activ Q; 2014 Oct; 31(4):310-24. PubMed ID: 25211479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Criterion validity of the activPAL™ and ActiGraph for assessing children's sitting and standing time in a school classroom setting.
    Ridley K; Ridgers ND; Salmon J
    Int J Behav Nutr Phys Act; 2016 Jul; 13():75. PubMed ID: 27387031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.