These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 32922765)

  • 1. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena.
    Mun J; Kim M; Yang Y; Badloe T; Ni J; Chen Y; Qiu CW; Rho J
    Light Sci Appl; 2020; 9():139. PubMed ID: 32922765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum.
    Ni J; Liu S; Hu G; Hu Y; Lao Z; Li J; Zhang Q; Wu D; Dong S; Chu J; Qiu CW
    ACS Nano; 2021 Feb; 15(2):2893-2900. PubMed ID: 33497201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook.
    Valev VK; Baumberg JJ; Sibilia C; Verbiest T
    Adv Mater; 2013 May; 25(18):2517-34. PubMed ID: 23553650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials.
    Tan L; Fu W; Gao Q; Wang PP
    Adv Mater; 2024 Jan; 36(3):e2309033. PubMed ID: 37944554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in the chiroptical properties of chiral plasmonic gold nanostructures: bioanalytical applications.
    John N; Mariamma AT
    Mikrochim Acta; 2021 Nov; 188(12):424. PubMed ID: 34811580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable Plasmonic Chirality: Fundamentals and Applications.
    Neubrech F; Hentschel M; Liu N
    Adv Mater; 2020 Oct; 32(41):e1905640. PubMed ID: 32077543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiroptical Metasurfaces: Principles, Classification, and Applications.
    Kim J; Rana AS; Kim Y; Kim I; Badloe T; Zubair M; Mehmood MQ; Rho J
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrete metal nanoparticles with plasmonic chirality.
    Zheng G; He J; Kumar V; Wang S; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM; Wong KY
    Chem Soc Rev; 2021 Mar; 50(6):3738-3754. PubMed ID: 33586721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence.
    Zhang X; Xu Y; Valenzuela C; Zhang X; Wang L; Feng W; Li Q
    Light Sci Appl; 2022 Jul; 11(1):223. PubMed ID: 35835737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress.
    Kong XT; Besteiro LV; Wang Z; Govorov AO
    Adv Mater; 2020 Oct; 32(41):e1801790. PubMed ID: 30260543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.
    Abdulrahman NA; Fan Z; Tonooka T; Kelly SM; Gadegaard N; Hendry E; Govorov AO; Kadodwala M
    Nano Lett; 2012 Feb; 12(2):977-83. PubMed ID: 22263754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Helical Dichroism on Microadditively Manufactured Copper Helices via Photonic Orbital Angular Momentum.
    Dai N; Liu S; Ren Z; Cao Y; Ni J; Wang D; Yang L; Hu Y; Li J; Chu J; Wu D
    ACS Nano; 2023 Jan; ():. PubMed ID: 36629479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral Generation of Hot Carriers for Polarization-Sensitive Plasmonic Photocatalysis.
    Negrín-Montecelo Y; Movsesyan A; Gao J; Burger S; Wang ZM; Nlate S; Pouget E; Oda R; Comesaña-Hermo M; Govorov AO; Correa-Duarte MA
    J Am Chem Soc; 2022 Feb; 144(4):1663-1671. PubMed ID: 35073069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules.
    Ben-Moshe A; Wolf SG; Bar Sadan M; Houben L; Fan Z; Govorov AO; Markovich G
    Nat Commun; 2014 Jul; 5():4302. PubMed ID: 25001884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications.
    Wang S; Liu X; Mourdikoudis S; Chen J; Fu W; Sofer Z; Zhang Y; Zhang S; Zheng G
    ACS Nano; 2022 Dec; 16(12):19789-19809. PubMed ID: 36454684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical absorbing origin of chiroptical activity in planar plasmonic metasurfaces.
    Najafabadi AF; Pakizeh T
    Sci Rep; 2017 Aug; 7(1):10251. PubMed ID: 28860536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials.
    Sun L; Tao Y; Yang G; Liu C; Sun X; Zhang Q
    Adv Mater; 2023 Aug; ():e2306297. PubMed ID: 37572380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials.
    Ahn HY; Yoo S; Cho NH; Kim RM; Kim H; Huh JH; Lee S; Nam KT
    Acc Chem Res; 2019 Oct; 52(10):2768-2783. PubMed ID: 31536328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circular Dichroism in Off-Resonantly Coupled Plasmonic Nanosystems.
    Ferry VE; Hentschel M; Alivisatos AP
    Nano Lett; 2015 Dec; 15(12):8336-41. PubMed ID: 26569468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.