These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 3292280)
21. Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis of phlorizin binding and D-glucose transport measurements. Koepsell H; Fritzsch G; Korn K; Madrala A J Membr Biol; 1990 Mar; 114(2):113-32. PubMed ID: 2342089 [TBL] [Abstract][Full Text] [Related]
22. 4-Azidophlorizin, a high affinity probe and photoaffinity label for the glucose transporter in brush border membranes. Gibbs EM; Hosang M; Reber BF; Semenza G; Diedrich DF Biochim Biophys Acta; 1982 Jun; 688(2):547-56. PubMed ID: 7201853 [TBL] [Abstract][Full Text] [Related]
23. Hydrogen ion-coupled transport of D-glucose by phlorizin-sensitive sugar carrier in intestinal brush-border membranes. Hoshi T; Takuwa N; Abe M; Tajima A Biochim Biophys Acta; 1986 Oct; 861(3):483-8. PubMed ID: 3768358 [TBL] [Abstract][Full Text] [Related]
24. Use of mild detergent gel electrophoresis for isolation and characterization of the kidney brush border D-glucose transporter. Starita-Geribaldi M; Poiree JC; Sudaka P Anal Biochem; 1987 Sep; 165(2):406-13. PubMed ID: 3425911 [TBL] [Abstract][Full Text] [Related]
25. Reconstitution of a partially purified Na+-dependent D-glucose transport system from rat jejunal brush border membranes. Ling KY; Faust RG Int J Biochem; 1985; 17(3):365-72. PubMed ID: 4040040 [TBL] [Abstract][Full Text] [Related]
26. High-affinity phlorizin binding to brush border membranes from small intestine: identity with (a part of) the glucose transport system, dependence on Na +-gradient, partial purification. Tannenbaum C; Toggenburger G; Kessler M; Rothstein A; Semenza G J Supramol Struct; 1977; 6(4):519-33. PubMed ID: 413010 [TBL] [Abstract][Full Text] [Related]
27. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney. Silverman M; Black J Biochim Biophys Acta; 1975 Jun; 394(1):10-30. PubMed ID: 1095065 [TBL] [Abstract][Full Text] [Related]
28. Reconstitution of D-glucose transport and high-affinity phlorizin binding after solubilization of kidney brush border proteins. Koepsell H; Menuhr H; Wissmüller TF; Ducis I; Haase W Ann N Y Acad Sci; 1980; 358():267-81. PubMed ID: 6938151 [No Abstract] [Full Text] [Related]
29. Intestinal brush border membrane Na+/glucose cotransporter functions in situ as a homotetramer. Stevens BR; Fernandez A; Hirayama B; Wright EM; Kempner ES Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1456-60. PubMed ID: 2304910 [TBL] [Abstract][Full Text] [Related]
30. Interaction of phlorizin and sodium with the renal brush-border membrane D-glucose transporter: stoichiometry and order of binding. Turner RJ; Silverman M J Membr Biol; 1981 Jan; 58(1):43-55. PubMed ID: 7194377 [TBL] [Abstract][Full Text] [Related]
31. Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy. Wielert-Badt S; Hinterdorfer P; Gruber HJ; Lin JT; Badt D; Wimmer B; Schindler H; Kinne RK Biophys J; 2002 May; 82(5):2767-74. PubMed ID: 11964262 [TBL] [Abstract][Full Text] [Related]
32. Two-step mechanism of phlorizin binding to the SGLT1 protein in the kidney. Oulianova N; Falk S; Berteloot A J Membr Biol; 2001 Feb; 179(3):223-42. PubMed ID: 11246421 [TBL] [Abstract][Full Text] [Related]
33. Insulin regulates Na+/glucose cotransporter activity in rat small intestine. Fujii Y; Kaizuka M; Hashida F; Maruo J; Sato E; Yasuda H; Kurokawa T; Ishibashi S Biochim Biophys Acta; 1991 Mar; 1063(1):90-4. PubMed ID: 2015265 [TBL] [Abstract][Full Text] [Related]
34. Synthesis of [3H]phlorizin and its binding behavior to renal brush-border membranes. Lin JT; Hahn KD Anal Biochem; 1983 Mar; 129(2):337-44. PubMed ID: 6846832 [TBL] [Abstract][Full Text] [Related]
35. Identification and partial purification of a band 3-like protein from rabbit renal brush border membranes. Karniski LP; Jennings ML J Biol Chem; 1989 Mar; 264(8):4564-70. PubMed ID: 2466837 [TBL] [Abstract][Full Text] [Related]
36. Isolation of the sodium-dependent d-glucose transport protein from brush-border membranes. Malathi P; Preiser H Biochim Biophys Acta; 1983 Nov; 735(3):314-24. PubMed ID: 6685531 [TBL] [Abstract][Full Text] [Related]
37. Diethylpyrocarbonate inhibition of sodium-glucose cotransport in kidney brush-border membrane vesicles. Poirée JC; Starita-Géribaldi M; Sudaka P Biochim Biophys Acta; 1987 Jun; 900(2):291-4. PubMed ID: 3593718 [TBL] [Abstract][Full Text] [Related]
38. Isolation of (a subunit of) the Na+/D-glucose cotransporter(s) of rabbit intestinal brush border membranes using monoclonal antibodies. Schmidt UM; Eddy B; Fraser CM; Venter JC; Semenza G FEBS Lett; 1983 Sep; 161(2):279-83. PubMed ID: 6684594 [No Abstract] [Full Text] [Related]
39. Na+/D-glucose cotransporter based bilayer lipid membrane sensor for D-glucose. Sugao N; Sugawara M; Minami H; Uto M; Umezawa Y Anal Chem; 1993 Feb; 65(4):363-9. PubMed ID: 8439009 [TBL] [Abstract][Full Text] [Related]
40. A simple liposomal system to reconstitute and assay highly efficient Na+/D-glucose cotransport from kidney brush-border membranes. Ducis I; Koepsell H Biochim Biophys Acta; 1983 Apr; 730(1):119-29. PubMed ID: 6681984 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]