These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32922807)

  • 41. Identification of Key Genes during Ethylene-Induced Adventitious Root Development in Cucumber (
    Deng Y; Wang C; Zhang M; Wei L; Liao W
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation.
    Wang Y; Wang Y; Ji K; Dai S; Hu Y; Sun L; Li Q; Chen P; Sun Y; Duan C; Wu Y; Luo H; Zhang D; Guo Y; Leng P
    Plant Physiol Biochem; 2013 Mar; 64():70-9. PubMed ID: 23376370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin.
    Ishibashi M; Yoshikawa H; Uno Y
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28574483
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptome analysis reveals the effects of grafting on sugar and α-linolenic acid metabolisms in fruits of cucumber with two different rootstocks.
    Zhao L; Liu A; Song T; Jin Y; Xu X; Gao Y; Ye X; Qi H
    Plant Physiol Biochem; 2018 Sep; 130():289-302. PubMed ID: 30036858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Function of auxin-binding protein gene during cucumber fruit development].
    Bai JG; Wang XJ; Yin QX; Xu YZ; Zhao RX
    Shi Yan Sheng Wu Xue Bao; 2004 Dec; 37(6):494-500. PubMed ID: 15789770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit.
    Choudhury SR; Roy S; Sengupta DN
    J Plant Physiol; 2008 Dec; 165(18):1865-78. PubMed ID: 18554749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptomic Analysis of the
    Benny J; Giovino A; Marra FP; Balan B; Martinelli F; Caruso T; Marchese A
    Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052400
    [No Abstract]   [Full Text] [Related]  

  • 48. In vitro auxin binding to cellular membranes of cucumber fruits.
    Narayanan KR; Mudge KW; Poovaiah BW
    Plant Physiol; 1981 Apr; 67(4):836-40. PubMed ID: 16661764
    [TBL] [Abstract][Full Text] [Related]  

  • 49.
    Liu X; Ge X; An J; Liu X; Ren H
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color.
    Wang M; Chen L; Liang Z; He X; Liu W; Jiang B; Yan J; Sun P; Cao Z; Peng Q; Lin Y
    BMC Plant Biol; 2020 Aug; 20(1):386. PubMed ID: 32831013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trehalose-6-phosphate and SNF1-related protein kinase 1 are involved in the first-fruit inhibition of cucumber.
    Zhang Z; Deng Y; Song X; Miao M
    J Plant Physiol; 2015 Apr; 177():110-120. PubMed ID: 25723473
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments.
    Morohashi K; Okamoto M; Yamazaki C; Fujii N; Miyazawa Y; Kamada M; Kasahara H; Osada I; Shimazu T; Fusejima Y; Higashibata A; Yamazaki T; Ishioka N; Kobayashi A; Takahashi H
    New Phytol; 2017 Sep; 215(4):1476-1489. PubMed ID: 28722158
    [TBL] [Abstract][Full Text] [Related]  

  • 53.
    Chen J; Huang Y; Liu X; Chen G; Liu L; Cheng Z; Song W; Han L; Wang S; Wang L; Li M; Zhang X; Zhao J
    Genes (Basel); 2022 Nov; 13(12):. PubMed ID: 36553483
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SPATULA and ALCATRAZ confer female sterility and fruit cavity via mediating pistil development in cucumber.
    Cheng Z; Song X; Liu X; Yan S; Song W; Wang Z; Han L; Zhao J; Yan L; Zhou Z; Zhang X
    Plant Physiol; 2022 Jun; 189(3):1553-1569. PubMed ID: 35389464
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination.
    Colle M; Weng Y; Kang Y; Ophir R; Sherman A; Grumet R
    Planta; 2017 Oct; 246(4):641-658. PubMed ID: 28623561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network.
    Zhao W; Yang X; Yu H; Jiang W; Sun N; Liu X; Liu X; Zhang X; Wang Y; Gu X
    Plant Cell Physiol; 2015 Mar; 56(3):455-67. PubMed ID: 25432971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NS encodes an auxin transporter that regulates the 'numerous spines' trait in cucumber (Cucumis sativus) fruit.
    Liu X; Yang X; Xie Q; Miao H; Bo K; Dong S; Xin T; Gu X; Sun J; Zhang S
    Plant J; 2022 Apr; 110(2):325-336. PubMed ID: 35181968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gibberellins modulate auxin responses during tomato (Solanum lycopersicum L.) fruit development.
    Mignolli F; Vidoz ML; Picciarelli P; Mariotti L
    Physiol Plant; 2019 Apr; 165(4):768-779. PubMed ID: 29888535
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of auxin during early berry development in grapevine as revealed by transcript profiling from pollination to fruit set.
    Godoy F; Kühn N; Muñoz M; Marchandon G; Gouthu S; Deluc L; Delrot S; Lauvergeat V; Arce-Johnson P
    Hortic Res; 2021 Jun; 8(1):140. PubMed ID: 34127649
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Auxin-mediated response of cucumber seedlings to gravity].
    Fujii N; Takahashi H
    Biol Sci Space; 2003 Aug; 17(2):126-34. PubMed ID: 14555810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.