BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32923433)

  • 21. Engineering of
    Arnesen JA; Borodina I
    Metab Eng Commun; 2022 Dec; 15():e00213. PubMed ID: 36387772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of Astaxanthin Biosynthesis in Oleaginous Yeast
    Tramontin LRR; Kildegaard KR; Sudarsan S; Borodina I
    Microorganisms; 2019 Oct; 7(10):. PubMed ID: 31635020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Building terpene production platforms in yeast.
    Zhuang X; Chappell J
    Biotechnol Bioeng; 2015 Sep; 112(9):1854-64. PubMed ID: 25788404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promoting the Synthesis of Precursor Substances by Overexpressing Hexokinase (Hxk) and Hydroxymethylglutaryl-CoA Synthase (Erg13) to Elevate β-Carotene Production in Engineered
    Qiang S; Wang J; Xiong XC; Qu YL; Liu L; Hu CY; Meng YH
    Front Microbiol; 2020; 11():1346. PubMed ID: 32636824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene.
    Beekwilder J; van Houwelingen A; Cankar K; van Dijk AD; de Jong RM; Stoopen G; Bouwmeester H; Achkar J; Sonke T; Bosch D
    Plant Biotechnol J; 2014 Feb; 12(2):174-82. PubMed ID: 24112147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a Terpenoid-Production Platform in Streptomyces reveromyceticus SN-593.
    Khalid A; Takagi H; Panthee S; Muroi M; Chappell J; Osada H; Takahashi S
    ACS Synth Biol; 2017 Dec; 6(12):2339-2349. PubMed ID: 29019653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.
    Martin VJ; Pitera DJ; Withers ST; Newman JD; Keasling JD
    Nat Biotechnol; 2003 Jul; 21(7):796-802. PubMed ID: 12778056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustainable biosynthesis of squalene from waste cooking oil by the yeast
    Wang S; Sun X; Han Y; Li Z; Lu X; Shi H; Zhang CY; Wong A; Yu A
    Metab Eng Commun; 2024 Jun; 18():e00240. PubMed ID: 38948667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of plant natural products through engineered Yarrowia lipolytica.
    Muhammad A; Feng X; Rasool A; Sun W; Li C
    Biotechnol Adv; 2020 Nov; 43():107555. PubMed ID: 32422161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism.
    Huang YY; Jian XX; Lv YB; Nian KQ; Gao Q; Chen J; Wei LJ; Hua Q
    J Biotechnol; 2018 Sep; 281():106-114. PubMed ID: 29986837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 32. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica.
    Yang X; Nambou K; Wei L; Hua Q
    Bioresour Technol; 2016 Sep; 216():1040-8. PubMed ID: 27347651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineered
    Troost K; Loeschcke A; Hilgers F; Özgür AY; Weber TM; Santiago-Schübel B; Svensson V; Hage-Hülsmann J; Habash SS; Grundler FMW; Schleker ASS; Jaeger KE; Drepper T
    Front Microbiol; 2019; 10():1998. PubMed ID: 31555236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone.
    Meng X; Liu H; Xu W; Zhang W; Wang Z; Liu W
    Microb Cell Fact; 2020 Feb; 19(1):21. PubMed ID: 32013959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of Yarrowia lipolytica for industrial applications.
    Zhu Q; Jackson EN
    Curr Opin Biotechnol; 2015 Dec; 36():65-72. PubMed ID: 26319895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.
    Jongedijk E; Cankar K; Ranzijn J; van der Krol S; Bouwmeester H; Beekwilder J
    Yeast; 2015 Jan; 32(1):159-71. PubMed ID: 25164098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of Triterpene Ginsenoside Compound K in the Non-conventional Yeast Yarrowia lipolytica.
    Li D; Wu Y; Zhang C; Sun J; Zhou Z; Lu W
    J Agric Food Chem; 2019 Mar; 67(9):2581-2588. PubMed ID: 30757901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering.
    Lin PC; Zhang F; Pakrasi HB
    Metab Eng Commun; 2021 Jun; 12():e00164. PubMed ID: 33659180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene.
    Larroude M; Celinska E; Back A; Thomas S; Nicaud JM; Ledesma-Amaro R
    Biotechnol Bioeng; 2018 Feb; 115(2):464-472. PubMed ID: 28986998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.