BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32923476)

  • 1. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation.
    Hasan MAH; Khan MU; Mishra D
    Biomed Res Int; 2020; 2020():1838140. PubMed ID: 32923476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels.
    Kwon J; Shin J; Im CH
    PLoS One; 2020; 15(3):e0230491. PubMed ID: 32187208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.
    Buccino AP; Keles HO; Omurtag A
    PLoS One; 2016; 11(1):e0146610. PubMed ID: 26730580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications.
    Ali MU; Zafar A; Kallu KD; Masood H; Mannan MMN; Ibrahim MM; Kim S; Khan MA
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3361-3370. PubMed ID: 37436864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features.
    Li R; Potter T; Huang W; Zhang Y
    Front Hum Neurosci; 2017; 11():462. PubMed ID: 28966581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance.
    Omurtag A; Aghajani H; Keles HO
    J Neural Eng; 2017 Dec; 14(6):066003. PubMed ID: 28730995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD).
    Khan MU; Hasan MAH
    Front Hum Neurosci; 2020; 14():599802. PubMed ID: 33363459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia.
    Blokland Y; Spyrou L; Thijssen D; Eijsvogels T; Colier W; Floor-Westerdijk M; Vlek R; Bruhn J; Farquhar J
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):222-9. PubMed ID: 24608682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy.
    Nagasawa T; Sato T; Nambu I; Wada Y
    J Neural Eng; 2020 Feb; 17(1):016068. PubMed ID: 31945755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG Electrode Selection for a Two-Class Motor Imagery Task in a BCI Using fNIRS Prior Data.
    Moslehi AH; Davies TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6627-6630. PubMed ID: 34892627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eyes-closed hybrid brain-computer interface employing frontal brain activation.
    Shin J; Müller KR; Hwang HJ
    PLoS One; 2018; 13(5):e0196359. PubMed ID: 29734383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossing time windows optimization based on mutual information for hybrid BCI.
    Meng M; Dai L; She Q; Ma Y; Kong W
    Math Biosci Eng; 2021 Sep; 18(6):7919-7935. PubMed ID: 34814281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study.
    Zimmermann R; Marchal-Crespo L; Edelmann J; Lambercy O; Fluet MC; Riener R; Wolf M; Gassert R
    J Neuroeng Rehabil; 2013 Jan; 10():4. PubMed ID: 23336819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards optimal visual presentation design for hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2018 Oct; 15(5):056019. PubMed ID: 30021931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.