These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32923805)
1. Experimental and Modeling of Conductivity for Electrolyte Solution Systems. Zhang W; Chen X; Wang Y; Wu L; Hu Y ACS Omega; 2020 Sep; 5(35):22465-22474. PubMed ID: 32923805 [TBL] [Abstract][Full Text] [Related]
2. Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. Hu YF; Zhang XM; Li JG; Liang QQ J Phys Chem B; 2008 Dec; 112(48):15376-81. PubMed ID: 18989914 [TBL] [Abstract][Full Text] [Related]
3. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis. Porras SP; Marziali E; Gas B; Kenndler E Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785 [TBL] [Abstract][Full Text] [Related]
4. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes. Aburto CC; Nägele G J Chem Phys; 2013 Oct; 139(13):134110. PubMed ID: 24116555 [TBL] [Abstract][Full Text] [Related]
5. A comparative study on the thermophysical properties for two bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids containing the trimethyl-sulfonium or the trimethyl-ammonium cation in molecular solvents. Couadou E; Jacquemin J; Galiano H; Hardacre C; Anouti M J Phys Chem B; 2013 Feb; 117(5):1389-402. PubMed ID: 23286649 [TBL] [Abstract][Full Text] [Related]
6. CALiSol-23: Experimental electrolyte conductivity data for various Li-salts and solvent combinations. de Blasio P; Elsborg J; Vegge T; Flores E; Bhowmik A Sci Data; 2024 Jul; 11(1):750. PubMed ID: 38987528 [TBL] [Abstract][Full Text] [Related]
7. Effect of salt concentration on properties of mixed carbonate-based electrolyte for Li-ion batteries: a molecular dynamics simulation study. Haghkhah H; Ghalami Choobar B; Amjad-Iranagh S J Mol Model; 2020 Aug; 26(8):220. PubMed ID: 32740770 [TBL] [Abstract][Full Text] [Related]
8. Approaches to Electrolyte Solvent Selection for Poly-Anthraquinone Sulfide Organic Electrode Material. Phadke S; Cao M; Anouti M ChemSusChem; 2018 Mar; 11(5):965-974. PubMed ID: 29205911 [TBL] [Abstract][Full Text] [Related]
9. New Electrical Conductivity Model for Electrolyte Solutions Based on the Debye-Hückel-Onsager Theory. Naseri Boroujeni S; Maribo-Mogensen B; Liang X; Kontogeorgis GM J Phys Chem B; 2023 Nov; 127(46):9954-9975. PubMed ID: 37948739 [TBL] [Abstract][Full Text] [Related]
10. Designed Synergetic Effect of Electrolyte Additives to Improve Interfacial Chemistry of MCMB Electrode in Propylene Carbonate-Based Electrolyte for Enhanced Low and Room Temperature Performance. Wotango AS; Su WN; Haregewoin AM; Chen HM; Cheng JH; Lin MH; Wang CH; Hwang BJ ACS Appl Mater Interfaces; 2018 Aug; 10(30):25252-25262. PubMed ID: 29741362 [TBL] [Abstract][Full Text] [Related]
11. Limiting conductances of electrolytes and the walden product in mixed solvents in a phenomenological approach. Apelblat A J Phys Chem B; 2008 Jun; 112(23):7032-44. PubMed ID: 18479161 [TBL] [Abstract][Full Text] [Related]
12. Analysis of excess Gibbs energy of electrolyte solutions: a new model for aqueous solutions. Dougherty RC; Howard LN Biophys Chem; 2003 Sep; 105(2-3):269-78. PubMed ID: 14499899 [TBL] [Abstract][Full Text] [Related]
13. The effect of different organic solvents on sodium ion storage in carbon nanopores. Karatrantos A; Khan S; Ohba T; Cai Q Phys Chem Chem Phys; 2018 Feb; 20(9):6307-6315. PubMed ID: 29435523 [TBL] [Abstract][Full Text] [Related]
14. Development of KPF Hosaka T; Matsuyama T; Kubota K; Yasuno S; Komaba S ACS Appl Mater Interfaces; 2020 Aug; 12(31):34873-34881. PubMed ID: 32697073 [TBL] [Abstract][Full Text] [Related]
15. Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. Bansal D; Cassel F; Croce F; Hendrickson M; Plichta E; Salomon M J Phys Chem B; 2005 Mar; 109(10):4492-6. PubMed ID: 16851523 [TBL] [Abstract][Full Text] [Related]
16. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects. Hunger J; Neueder R; Buchner R; Apelblat A J Phys Chem B; 2013 Jan; 117(2):615-22. PubMed ID: 23241014 [TBL] [Abstract][Full Text] [Related]
17. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation. Lyubimova O; Stoyanov SR; Gusarov S; Kovalenko A Langmuir; 2015 Jun; 31(25):7106-16. PubMed ID: 26053228 [TBL] [Abstract][Full Text] [Related]
18. Scalable Screening of Soft Matter: A Case Study of Mixtures of Ionic Liquids and Organic Solvents. Thompson MW; Matsumoto R; Sacci RL; Sanders NC; Cummings PT J Phys Chem B; 2019 Feb; 123(6):1340-1347. PubMed ID: 30652873 [TBL] [Abstract][Full Text] [Related]
19. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure. Zhao L; Ji J; Tao L; Lin S Langmuir; 2016 Sep; 32(36):9188-96. PubMed ID: 27564433 [TBL] [Abstract][Full Text] [Related]
20. An improved theory of the electric conductance of ionic solutions based on the concept of the ion-atmosphere's smaller-ion shell. Fraenkel D Phys Chem Chem Phys; 2018 Dec; 20(47):29896-29909. PubMed ID: 30474091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]