These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32923973)

  • 21. Are tumours angiogenesis-dependent?
    Verheul HM; Voest EE; Schlingemann RO
    J Pathol; 2004 Jan; 202(1):5-13. PubMed ID: 14694516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies.
    Yang Z; Deng W; Zhang X; An Y; Liu Y; Yao H; Zhang Z
    Front Oncol; 2021; 11():789330. PubMed ID: 35083147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Vascular perfusion as the origin of neoplasm resistance to radio- and chemotherapy].
    Martinive P; Coucke PA
    Rev Med Liege; 2010 Mar; 65(3):133-9. PubMed ID: 20411817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of the tumor vasculature and oxygenation to improve therapy.
    Siemann DW; Horsman MR
    Pharmacol Ther; 2015 Sep; 153():107-24. PubMed ID: 26073310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trends and Challenges in Tumor Anti-Angiogenic Therapies.
    Jászai J; Schmidt MHH
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tumour angiogenesis, anti-angiogenic therapy and chemotherapeutic resistance.
    Mander KA; Finnie JW
    Aust Vet J; 2018 Oct; 96(10):371-378. PubMed ID: 30255577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting the vasculature in hepatocellular carcinoma treatment: Starving versus normalizing blood supply.
    Liu K; Zhang X; Xu W; Chen J; Yu J; Gamble JR; McCaughan GW
    Clin Transl Gastroenterol; 2017 Jun; 8(6):e98. PubMed ID: 28617447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy.
    Denekamp J
    Br J Radiol; 1993 Mar; 66(783):181-96. PubMed ID: 7682469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melanoma Tumour Vascularization and Tissue-Resident Endothelial Progenitor Cells.
    Hashemi G; Dight J; Khosrotehrani K; Sormani L
    Cancers (Basel); 2022 Aug; 14(17):. PubMed ID: 36077754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer.
    Chouaib S; Noman MZ; Kosmatopoulos K; Curran MA
    Oncogene; 2017 Jan; 36(4):439-445. PubMed ID: 27345407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tumour blood vessel normalisation by prolyl hydroxylase inhibitor repaired sensitivity to chemotherapy in a tumour mouse model.
    Koyama S; Matsunaga S; Imanishi M; Maekawa Y; Kitano H; Takeuchi H; Tomita S
    Sci Rep; 2017 Mar; 7():45621. PubMed ID: 28361934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Anti-Colon Cancer Effects of Essential Oil of
    Feng Y; Deng L; Guo H; Zhao Y; Peng F; Wang G; Yu C
    Front Oncol; 2021; 11():728464. PubMed ID: 34765545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Angiogenesis and angiogenesis inhibitors in cancer.
    Giavazzi R; Taraboletti G
    Forum (Genova); 1999; 9(3):261-72. PubMed ID: 10504172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy.
    Moore C; Kosgodage U; Lange S; Inal JM
    Int J Cancer; 2017 Aug; 141(3):428-436. PubMed ID: 28247946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broad targeting of angiogenesis for cancer prevention and therapy.
    Wang Z; Dabrosin C; Yin X; Fuster MM; Arreola A; Rathmell WK; Generali D; Nagaraju GP; El-Rayes B; Ribatti D; Chen YC; Honoki K; Fujii H; Georgakilas AG; Nowsheen S; Amedei A; Niccolai E; Amin A; Ashraf SS; Helferich B; Yang X; Guha G; Bhakta D; Ciriolo MR; Aquilano K; Chen S; Halicka D; Mohammed SI; Azmi AS; Bilsland A; Keith WN; Jensen LD
    Semin Cancer Biol; 2015 Dec; 35 Suppl(Suppl):S224-S243. PubMed ID: 25600295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the tumour microenvironment in immunotherapy.
    Gasser S; Lim LHK; Cheung FSG
    Endocr Relat Cancer; 2017 Dec; 24(12):T283-T295. PubMed ID: 28754821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis.
    Noguera-Troise I; Daly C; Papadopoulos NJ; Coetzee S; Boland P; Gale NW; Lin HC; Yancopoulos GD; Thurston G
    Novartis Found Symp; 2007; 283():106-20; discussion 121-5, 238-41. PubMed ID: 18300417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges.
    Noman MZ; Hasmim M; Lequeux A; Xiao M; Duhem C; Chouaib S; Berchem G; Janji B
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa.
    Khan KA; Kerbel RS
    Nat Rev Clin Oncol; 2018 May; 15(5):310-324. PubMed ID: 29434333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics.
    Adhikarla V; Jeraj R
    Phys Med Biol; 2016 May; 61(10):3885-902. PubMed ID: 27117345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.