BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32924048)

  • 21. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects.
    McClements DJ
    Adv Colloid Interface Sci; 2017 Feb; 240():31-59. PubMed ID: 28034309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of xanthan gum on lipid digestion and bioaccessibility of β-carotene-loaded rice starch-based filled hydrogels.
    Park S; Mun S; Kim YR
    Food Res Int; 2018 Mar; 105():440-445. PubMed ID: 29433234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An all-aqueous approach for physical immobilization of PEG-lipid microgels on organoid surfaces.
    Birgul Akolpoglu M; Inceoglu Y; Kizilel S
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110708. PubMed ID: 31838268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of pH on mechanical properties, storage stability and digestion of alginate-based and soy protein isolate-stabilized emulsion gel beads with encapsulated lycopene.
    Lin D; Kelly AL; Miao S
    Food Chem; 2022 Mar; 372():131262. PubMed ID: 34628120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic generation of composite biopolymer microgels with tunable compositions and mechanical properties.
    Chau M; Abolhasani M; Thérien-Aubin H; Li Y; Wang Y; Velasco D; Tumarkin E; Ramachandran A; Kumacheva E
    Biomacromolecules; 2014 Jul; 15(7):2419-25. PubMed ID: 24931723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Load phycocyanin to achieve in vivo imaging of casein-porous starch microgels induced by ultra-high-pressure homogenization.
    Hu D; Zhang Z; Yuan L; Li W; Guo Y; Zhang R; Yang X; Peng H
    Int J Biol Macromol; 2021 Dec; 193(Pt A):127-136. PubMed ID: 34699889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing the physicochemical stability and digestibility of DHA emulsions by encapsulation of DHA droplets in caseinate/alginate honeycomb-shaped microparticles.
    Ma N; Gao Q; Li X; Xu D; Yuan Y; Cao Y
    Food Funct; 2020 Mar; 11(3):2080-2093. PubMed ID: 32129355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polyelectrolyte Complex Inclusive Biohybrid Microgels for Tailoring Delivery of Copigmented Anthocyanins.
    Tan C; B Celli G; Lee M; Licker J; Abbaspourrad A
    Biomacromolecules; 2018 May; 19(5):1517-1527. PubMed ID: 29584407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of β-carotene bioaccessibility using starch-based filled hydrogels.
    Mun S; Kim YR; McClements DJ
    Food Chem; 2015 Apr; 173():454-61. PubMed ID: 25466045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of protein digestion under simulated gastrointestinal conditions using biopolymer microgels.
    Zhang Z; Zhang R; McClements DJ
    Food Res Int; 2017 Oct; 100(Pt 2):86-94. PubMed ID: 28888462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of β-carotene loaded oil-in-water emulsions using mixed biopolymer-particle-surfactant interfaces.
    Wei Y; Zhou D; Yang S; Dai L; Zhang L; Mao L; Gao Y; Mackie A
    Food Funct; 2021 Apr; 12(7):3246-3265. PubMed ID: 33877248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HEMA based pH-sensitive semi IPN microgels for oral delivery; a rationale approach for ketoprofen.
    Zia MA; Sohail M; Minhas MU; Sarfraz RM; Khan S; de Matas M; Hussain Z; Abbasi M; Shah SA; Kousar M; Ahmad N
    Drug Dev Ind Pharm; 2020 Feb; 46(2):272-282. PubMed ID: 31928342
    [No Abstract]   [Full Text] [Related]  

  • 33. Development of the pH responsive chitosan-alginate based microgel for encapsulation of Jughans regia L. polyphenols under simulated gastrointestinal digestion in vitro.
    Feng R; Wang L; Zhou P; Luo Z; Li X; Gao L
    Carbohydr Polym; 2020 Dec; 250():116917. PubMed ID: 33049889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability, Interfacial Structure, and Gastrointestinal Digestion of β-Carotene-Loaded Pickering Emulsions Co-stabilized by Particles, a Biopolymer, and a Surfactant.
    Wei Y; Zhou D; Mackie A; Yang S; Dai L; Zhang L; Mao L; Gao Y
    J Agric Food Chem; 2021 Feb; 69(5):1619-1636. PubMed ID: 33512160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Processing of fast-gelling hydrogel precursors in microfluidics by electrocoalescence of reactive species.
    Hauck N; Neuendorf TA; Männel MJ; Vogel L; Liu P; Stündel E; Zhang Y; Thiele J
    Soft Matter; 2021 Nov; 17(45):10312-10321. PubMed ID: 34664052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of octenyl succinylated starch microgels via a water-in-oil (W/O) inverse microemulsion process for loading and releasing epigallocatechin gallate.
    Gao W; Zhu J; Liu P; Cui B; Abd El-Aty AM
    Food Chem; 2021 Sep; 355():129661. PubMed ID: 33848937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components.
    McClements DJ; Li Y
    Adv Colloid Interface Sci; 2010 Sep; 159(2):213-28. PubMed ID: 20638649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microgels: Modular, tunable constructs for tissue regeneration.
    Newsom JP; Payne KA; Krebs MD
    Acta Biomater; 2019 Apr; 88():32-41. PubMed ID: 30769137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stabilization of biopolymer microgels formed by electrostatic complexation: Influence of enzyme (laccase) cross-linking on pH, thermal, and mechanical stability.
    Azarikia F; Wu BC; Abbasi S; McClements DJ
    Food Res Int; 2015 Dec; 78():18-26. PubMed ID: 28433280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and characterization of emulsion-filled gel beads for the encapsulation and protection of resveratrol and α-tocopherol.
    Feng W; Yue C; Wusigale ; Ni Y; Liang L
    Food Res Int; 2018 Jun; 108():161-171. PubMed ID: 29735045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.