BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32924069)

  • 1. Role of bone 1stem cell-seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat.
    Sahvieh S; Oryan A; Hassanajili S; Kamali A
    Cell Tissue Res; 2021 Feb; 383(2):735-750. PubMed ID: 32924069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat.
    Oryan A; Hassanajili S; Sahvieh S; Azarpira N
    Life Sci; 2020 Sep; 257():118038. PubMed ID: 32622947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of a biodegradable 3D polylactic acid/poly(ɛ-caprolactone)/hydroxyapatite scaffold loaded by differentiated osteogenic cells in a critical-sized radius bone defect in rat.
    Oryan A; Hassanajili S; Sahvieh S
    J Tissue Eng Regen Med; 2021 Feb; 15(2):150-162. PubMed ID: 33216449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication.
    Liao HT; Chen YY; Lai YT; Hsieh MF; Jiang CP
    Biomed Res Int; 2014; 2014():321549. PubMed ID: 24868523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Moshiri A; Baharvand H
    Cell Tissue Res; 2018 Oct; 374(1):63-81. PubMed ID: 29717356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zoledronate loaded polylactic acid/polycaprolactone/hydroxyapatite scaffold accelerates regeneration and led to enhance structural performance and functional ability of the radial bone defect in rat.
    Oryan A; Hassanajili S; Sahvieh S
    Iran J Vet Res; 2023; 24(2):122-125. PubMed ID: 37790115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat.
    Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X
    Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells.
    Xuan Y; Tang H; Wu B; Ding X; Lu Z; Li W; Xu Z
    J Biomed Mater Res A; 2014 Oct; 102(10):3401-8. PubMed ID: 24142768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation.
    Li D; Zhang K; Shi C; Liu L; Yan G; Liu C; Zhou Y; Hu Y; Sun H; Yang B
    Int J Nanomedicine; 2018; 13():7167-7181. PubMed ID: 30464466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells].
    Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Sayahpour FA; Baharvand H
    J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):50-64. PubMed ID: 29468802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect.
    Tian B; Wang N; Jiang Q; Tian L; Hu L; Zhang Z
    J Mater Sci Mater Med; 2021 Jun; 32(6):63. PubMed ID: 34097140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-HA Scaffold Functionalized by Extracellular Matrix of Stem Cells Promotes Bone Repair.
    Chi H; Chen G; He Y; Chen G; Tu H; Liu X; Yan J; Wang X
    Int J Nanomedicine; 2020; 15():5825-5838. PubMed ID: 32821104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dually optimized polycaprolactone/collagen I microfiber scaffolds with stem cell capture and differentiation-inducing abilities promote bone regeneration.
    Chi H; Jiang A; Wang X; Chen G; Song C; Prajapati RK; Li A; Li Z; Li J; Zhang Z; Ji Y; Yan J
    J Mater Chem B; 2019 Nov; 7(44):7052-7064. PubMed ID: 31641711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects.
    Kamali A; Oryan A; Hosseini S; Ghanian MH; Alizadeh M; Baghaban Eslaminejad M; Baharvand H
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():64-75. PubMed ID: 31029357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotary-jet spun polycaprolactone/nano-hydroxyapatite scaffolds modified by simulated body fluid influenced the flexural mode of the neoformed bone.
    Vasconcellos LMR; Elias CMV; Minhoto GB; Abdala JMA; Andrade TM; de Araujo JCR; Gusmão SBS; Viana BC; Marciano FR; Lobo AO
    J Mater Sci Mater Med; 2020 Jul; 31(8):72. PubMed ID: 32719958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and Osteogenic Capacity of Periodontal Ligament Stem Cells on nHAC/PLA and HA/TCP Scaffolds.
    He H; Yu J; Cao J; E L; Wang D; Zhang H; Liu H
    J Biomater Sci Polym Ed; 2011; 22(1-3):179-94. PubMed ID: 20557694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.