BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32924069)

  • 21. Improved healing of critical-size femoral defect in osteoporosis rat models using 3D elastin/polycaprolactone/nHA scaffold in combination with mesenchymal stem cells.
    Hejazi F; Ebrahimi V; Asgary M; Piryaei A; Fridoni MJ; Kermani AA; Zare F; Abdollahifar MA
    J Mater Sci Mater Med; 2021 Mar; 32(3):27. PubMed ID: 33683483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional synergy of anti-mir221 and nanohydroxyapatite scaffold in bone tissue engineering of rat skull.
    Sadeghi M; Bakhshandeh B; Dehghan MM; Mehrnia MR; Khojasteh A
    J Mater Sci Mater Med; 2016 Aug; 27(8):132. PubMed ID: 27412651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds.
    Gendviliene I; Simoliunas E; Alksne M; Dibart S; Jasiuniene E; Cicenas V; Jacobs R; Bukelskiene V; Rutkunas V
    Eur Cell Mater; 2021 Feb; 41():204-215. PubMed ID: 33641140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing.
    Yao Q; Wei B; Liu N; Li C; Guo Y; Shamie AN; Chen J; Tang C; Jin C; Xu Y; Bian X; Zhang X; Wang L
    Tissue Eng Part A; 2015 Apr; 21(7-8):1388-97. PubMed ID: 25530453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hollow Hydroxyapatite Microspheres Loaded with rhCXCL13 to Recruit BMSC for Osteogenesis and Synergetic Angiogenesis to Promote Bone Regeneration in Bone Defects.
    Zeng J; Xiong S; Zhou J; Wei P; Guo K; Wang F; Ouyang M; Long Z; Yao A; Li J; Xiong L; Wu D
    Int J Nanomedicine; 2023; 18():3509-3534. PubMed ID: 37404852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Study on bone marrow mesenchymal stem cells derived osteoblasts and endothelial cells compound with chitosan/hydroxyapatite scaffold to construct vascularized tissue engineered bone].
    Hao Z; Feng W; Hao T; Yu B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):489-94. PubMed ID: 22568335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects.
    Shahrezaee M; Salehi M; Keshtkari S; Oryan A; Kamali A; Shekarchi B
    Nanomedicine; 2018 Oct; 14(7):2061-2073. PubMed ID: 29964218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.
    Chen G; Yang L; Lv Y
    J Biomed Mater Res A; 2016 Apr; 104(4):833-41. PubMed ID: 26650620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional printed polylactic acid and hydroxyapatite composite scaffold with urine-derived stem cells as a treatment for bone defects.
    Zhang X; Chen JL; Xing F; Duan X
    J Mater Sci Mater Med; 2022 Oct; 33(10):71. PubMed ID: 36190568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration.
    Rathbone CR; Guda T; Singleton BM; Oh DS; Appleford MR; Ong JL; Wenke JC
    J Biomed Mater Res A; 2014 May; 102(5):1458-66. PubMed ID: 23776110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction.
    An SH; Matsumoto T; Miyajima H; Nakahira A; Kim KH; Imazato S
    Dent Mater; 2012 Dec; 28(12):1221-31. PubMed ID: 23018082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction.
    Tour G; Wendel M; Tcacencu I
    J Tissue Eng Regen Med; 2014 Nov; 8(11):841-9. PubMed ID: 22782939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.