These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32924277)

  • 21. Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration.
    Putra NE; Borg KGN; Diaz-Payno PJ; Leeflang MA; Klimopoulou M; Taheri P; Mol JMC; Fratila-Apachitei LE; Huan Z; Chang J; Zhou J; Zadpoor AA
    Acta Biomater; 2022 Aug; 148():355-373. PubMed ID: 35690326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth.
    Jones AC; Arns CH; Hutmacher DW; Milthorpe BK; Sheppard AP; Knackstedt MA
    Biomaterials; 2009 Mar; 30(7):1440-51. PubMed ID: 19091398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation.
    Abarrategi A; Moreno-Vicente C; Martínez-Vázquez FJ; Civantos A; Ramos V; Sanz-Casado JV; Martínez-Corriá R; Perera FH; Mulero F; Miranda P; López-Lacomba JL
    PLoS One; 2012; 7(3):e34117. PubMed ID: 22470527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent trends in bone tissue engineering: a review of materials, methods, and structures.
    Moghaddam A; Bahrami M; Mirzadeh M; Khatami M; Simorgh S; Chimehrad M; Kruppke B; Bagher Z; Mehrabani D; Khonakdar HA
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38636500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
    Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C
    J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.
    Denry I; Kuhn LT
    Dent Mater; 2016 Jan; 32(1):43-53. PubMed ID: 26423007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties.
    Schumacher M; Deisinger U; Detsch R; Ziegler G
    J Mater Sci Mater Med; 2010 Dec; 21(12):3119-27. PubMed ID: 20953674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review on vat photopolymerization additive manufacturing of bioactive ceramic bone scaffolds.
    Guo W; Li B; Li P; Zhao L; You H; Long Y
    J Mater Chem B; 2023 Oct; 11(40):9572-9596. PubMed ID: 37727909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2.
    Kleer-Reiter N; Julmi S; Feichtner F; Waselau AC; Klose C; Wriggers P; Maier HJ; Meyer-Lindenberg A
    Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33827052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of calcium carbonate-containing composite scaffolds.
    Olah L; Borbas L
    Acta Bioeng Biomech; 2008; 10(1):61-6. PubMed ID: 18634355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds.
    McNamara SL; Rnjak-Kovacina J; Schmidt DF; Lo TJ; Kaplan DL
    Biomaterials; 2014 Aug; 35(25):6941-53. PubMed ID: 24881027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique.
    Wilson CE; van Blitterswijk CA; Verbout AJ; Dhert WJ; de Bruijn JD
    J Mater Sci Mater Med; 2011 Jan; 22(1):97-105. PubMed ID: 21069558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications.
    Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M
    J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.
    Seitz H; Rieder W; Irsen S; Leukers B; Tille C
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):782-8. PubMed ID: 15981173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.