BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32924361)

  • 1. [Construction and verification of Lactococcus lactis NZ9000 genome-scale metabolic model].
    Sun W; Zhang J; Du G
    Sheng Wu Gong Cheng Xue Bao; 2020 Aug; 36(8):1629-1639. PubMed ID: 32924361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000.
    Zhu D; Fu Y; Liu F; Xu H; Saris PE; Qiao M
    Microb Cell Fact; 2017 Jan; 16(1):1. PubMed ID: 28049473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses.
    Zhang M; Chen J; Zhang J; Du G
    J Sci Food Agric; 2014 Dec; 94(15):3125-33. PubMed ID: 24648035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies.
    Linares DM; Kok J; Poolman B
    J Bacteriol; 2010 Nov; 192(21):5806-12. PubMed ID: 20639323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system.
    Liu F; Zhang Y; Qiao W; Zhu D; Xu H; Saris PEJ; Qiao M
    Microb Cell Fact; 2019 Nov; 18(1):198. PubMed ID: 31727072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host.
    Fu RY; Bongers RS; van Swam II; Chen J; Molenaar D; Kleerebezem M; Hugenholtz J; Li Y
    Metab Eng; 2006 Nov; 8(6):662-71. PubMed ID: 16962352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Lactococcus lactis using a genome-scale flux model.
    Oliveira AP; Nielsen J; Förster J
    BMC Microbiol; 2005 Jun; 5():39. PubMed ID: 15982422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of genomic characteristics and carbohydrates' metabolic activity of Lactococcus lactis subsp. lactis during ripening of a Swiss-type cheese.
    Mataragas M
    Food Microbiol; 2020 May; 87():103392. PubMed ID: 31948633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid and versatile tool for genomic engineering in Lactococcus lactis.
    Guo T; Xin Y; Zhang Y; Gu X; Kong J
    Microb Cell Fact; 2019 Jan; 18(1):22. PubMed ID: 30704485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Evolution of gene regulation research in Lactococcus lactis.
    Kok J; van Gijtenbeek LA; de Jong A; van der Meulen SB; Solopova A; Kuipers OP
    FEMS Microbiol Rev; 2017 Aug; 41(Supp_1):S220-S243. PubMed ID: 28830093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT.
    Zhu Z; Ji X; Wu Z; Zhang J; Du G
    J Ind Microbiol Biotechnol; 2018 Dec; 45(12):1091-1101. PubMed ID: 30232653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome plasticity in Lactococcus lactis.
    Campo N; Dias MJ; Daveran-Mingot ML; Ritzenthaler P; Le Bourgeois P
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):123-32. PubMed ID: 12369184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete genome sequence of Lactococcus lactis subsp. lactis KLDS4. 0325, a bacterium newly isolated from Koumiss in Xinjiang, China.
    Yang X; Wang Y; Zhou Y; Gao X; Li B; Huo G
    Wei Sheng Wu Xue Bao; 2014 Dec; 54(12):1406-18. PubMed ID: 25876326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome shuffling of Lactococcus lactis subspecies lactis YF11 for improving nisin Z production and comparative analysis.
    Zhang YF; Liu SY; Du YH; Feng WJ; Liu JH; Qiao JJ
    J Dairy Sci; 2014 May; 97(5):2528-41. PubMed ID: 24612797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of murine models to detect the allergenicity of genetically modified Lactococcus lactis NZ9000/pNZPNK.
    Chiang SS; Liu CF; Ku TW; Mau JL; Lin HT; Pan TM
    J Agric Food Chem; 2011 Apr; 59(8):3876-83. PubMed ID: 21410287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteomic analysis of four biotechnological strains Lactococcus lactis through label-free quantitative proteomics.
    Silva WM; Sousa CS; Oliveira LC; Soares SC; Souza GFMH; Tavares GC; Resende CP; Folador EL; Pereira FL; Figueiredo H; Azevedo V
    Microb Biotechnol; 2019 Mar; 12(2):265-274. PubMed ID: 30341804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis.
    Lu Y; Yan H; Deng J; Huang Z; Jin X; Yu Y; Hu Q; Hu F; Wang J
    Microb Cell Fact; 2017 Sep; 16(1):154. PubMed ID: 28923077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivitamin production in Lactococcus lactis using metabolic engineering.
    Sybesma W; Burgess C; Starrenburg M; van Sinderen D; Hugenholtz J
    Metab Eng; 2004 Apr; 6(2):109-15. PubMed ID: 15113564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety and risk assessment of the genetically modified Lactococci on rats intestinal bacterial flora.
    Lee KC; Liu CF; Lin TH; Pan TM
    Int J Food Microbiol; 2010 Aug; 142(1-2):164-9. PubMed ID: 20619909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.