BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32924448)

  • 1. Selective Arsenic Removal from Groundwaters Using Redox-Active Polyvinylferrocene-Functionalized Electrodes: Role of Oxygen.
    Song Z; Garg S; Ma J; Waite TD
    Environ Sci Technol; 2020 Oct; 54(19):12081-12091. PubMed ID: 32924448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cations on As(III) removal from simulated groundwaters by double potential step chronoamperometry (DPSC) employing polyvinylferrocene (PVF) functionalized electrodes.
    Song Z; Garg S; Ma J; Waite TD
    J Hazard Mater; 2022 Feb; 424(Pt B):127472. PubMed ID: 34655881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified Double Potential Step Chronoamperometry (DPSC) Method for As(III) Electro-oxidation and Concomitant As(V) Adsorption from Groundwaters.
    Song Z; Garg S; Ma J; Waite TD
    Environ Sci Technol; 2019 Aug; 53(16):9715-9724. PubMed ID: 31331165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient removal of As(III) from groundwaters through self-alkalization in an asymmetric flow-electrode electrochemical separation system.
    Yin H; Liu L; Ma J; Zhang C; Qiu G
    Water Res; 2023 Nov; 246():120734. PubMed ID: 37862875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic adsorption on Fe-Mn modified granular activated carbon (GAC-FeMn): batch and fixed-bed column studies.
    Nikić J; Agbaba J; Watson MA; Tubić A; Šolić M; Maletić S; Dalmacija B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(3):168-178. PubMed ID: 30688160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.
    Niazi NK; Bibi I; Shahid M; Ok YS; Burton ED; Wang H; Shaheen SM; Rinklebe J; Lüttge A
    Environ Pollut; 2018 Jan; 232():31-41. PubMed ID: 28966026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Organic Framework with a Redox-Active Bridge Enables Electrochemically Highly Selective Removal of Arsenic from Water.
    Shi W; Ma J; Gao F; Dai R; Su X; Wang Z
    Environ Sci Technol; 2023 Apr; 57(15):6342-6352. PubMed ID: 37010389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system.
    Bandaru SRS; Roy A; Gadgil AJ; van Genuchten CM
    Water Res; 2020 May; 175():115668. PubMed ID: 32163769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.
    Zhang P; Tong M; Yuan S; Liao P
    J Contam Hydrol; 2014 Aug; 164():299-307. PubMed ID: 25041731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.
    Fan CS; Liou SYH; Hou CH
    Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China.
    Zhang J; Ma T; Feng L; Yan Y; Abass OK; Wang Z; Cai H
    Sci Total Environ; 2017 Apr; 584-585():458-468. PubMed ID: 28185734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater.
    Shakoor MB; Niazi NK; Bibi I; Shahid M; Sharif F; Bashir S; Shaheen SM; Wang H; Tsang DCW; Ok YS; Rinklebe J
    Sci Total Environ; 2018 Dec; 645():1444-1455. PubMed ID: 30248866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidation of As(III) in groundwater using biological manganese removal filtration columns.
    Yang H; Sun W; Ge H; Yao R
    Environ Technol; 2015; 36(21):2732-9. PubMed ID: 26056846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment.
    Katsoyiannis IA; Hug SJ; Ammann A; Zikoudi A; Hatziliontos C
    Sci Total Environ; 2007 Sep; 383(1-3):128-40. PubMed ID: 17570466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh.
    Rahman MM; Bakker M; Patty CH; Hassan Z; Röling WF; Ahmed KM; van Breukelen BM
    Sci Total Environ; 2015 Dec; 537():277-93. PubMed ID: 26282762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.
    Niazi NK; Burton ED
    Environ Pollut; 2016 Nov; 218():111-117. PubMed ID: 27552044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrocene functionalized graphene based electrode for the electro-Fenton oxidation of ciprofloxacin.
    Divyapriya G; Nambi I; Senthilnathan J
    Chemosphere; 2018 Oct; 209():113-123. PubMed ID: 29920409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Arsenite Removal from Silicate-containing Water by Using Redox Polymer-based Fe(III) Oxides Nanocomposite.
    Fang Z; Li Z; Zhang X; Pan S; Wu M; Pan B
    Water Res; 2021 Feb; 189():116673. PubMed ID: 33276212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active MnO
    Cuong DV; Wu PC; Chen LI; Hou CH
    Water Res; 2021 Jan; 188():116495. PubMed ID: 33065416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.