These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32924466)

  • 1. ChemGrapher: Optical Graph Recognition of Chemical Compounds by Deep Learning.
    Oldenhof M; Arany A; Moreau Y; Simm J
    J Chem Inf Model; 2020 Oct; 60(10):4506-4517. PubMed ID: 32924466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ABC-Net: a divide-and-conquer based deep learning architecture for SMILES recognition from molecular images.
    Zhang XC; Yi JC; Yang GP; Wu CK; Hou TJ; Cao DS
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35212357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel hybrid framework for metabolic pathways prediction based on the graph attention network.
    Yang Z; Liu J; Shah HA; Feng J
    BMC Bioinformatics; 2022 Sep; 23(Suppl 5):329. PubMed ID: 36171550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectively Identifying Compound-Protein Interaction Using Graph Neural Representation.
    Lin X; Quan Z; Wang ZJ; Guo Y; Zeng X; Yu PS
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):932-943. PubMed ID: 35951570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph Classification of Molecules Using Force Field Atom and Bond Types.
    Jippo H; Matsuo T; Kikuchi R; Fukuda D; Matsuura A; Ohfuchi M
    Mol Inform; 2020 Jan; 39(1-2):e1800155. PubMed ID: 31589809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Could deep learning in neural networks improve the QSAR models?
    Gini G; Zanoli F; Gamba A; Raitano G; Benfenati E
    SAR QSAR Environ Res; 2019 Sep; 30(9):617-642. PubMed ID: 31460798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual graph convolutional neural network for predicting chemical networks.
    Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations.
    Wang J; Liu X; Shen S; Deng L; Liu H
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DECIMER-Segmentation: Automated extraction of chemical structure depictions from scientific literature.
    Rajan K; Brinkhaus HO; Sorokina M; Zielesny A; Steinbeck C
    J Cheminform; 2021 Mar; 13(1):20. PubMed ID: 33685498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ComABAN: refining molecular representation with the graph attention mechanism to accelerate drug discovery.
    Yan H; Xie Y; Liu Y; Yuan L; Sheng R
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35998925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Costless Performance Improvement in Machine Learning for Graph-Based Molecular Analysis.
    Na GS; Kim HW; Chang H
    J Chem Inf Model; 2020 Mar; 60(3):1137-1145. PubMed ID: 31928003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph convolutional neural network applied to the prediction of normal boiling point.
    Qu C; Kearsley AJ; Schneider BI; Keyrouz W; Allison TC
    J Mol Graph Model; 2022 May; 112():108149. PubMed ID: 35149486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognizing basal cell carcinoma on smartphone-captured digital histopathology images with a deep neural network.
    Jiang YQ; Xiong JH; Li HY; Yang XH; Yu WT; Gao M; Zhao X; Ma YP; Zhang W; Guan YF; Gu H; Sun JF
    Br J Dermatol; 2020 Mar; 182(3):754-762. PubMed ID: 31017653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DECIMER 1.0: deep learning for chemical image recognition using transformers.
    Rajan K; Zielesny A; Steinbeck C
    J Cheminform; 2021 Aug; 13(1):61. PubMed ID: 34404468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Everything is connected: Graph neural networks.
    Veličković P
    Curr Opin Struct Biol; 2023 Apr; 79():102538. PubMed ID: 36764042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.