These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32924477)

  • 21. Discovery and Characterization of (8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly(ADP-ribose) Polymerase-1/2 Inhibitor, as an Anticancer Agent.
    Wang B; Chu D; Feng Y; Shen Y; Aoyagi-Scharber M; Post LE
    J Med Chem; 2016 Jan; 59(1):335-57. PubMed ID: 26652717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Avoid the trap: Targeting PARP1 beyond human malignancy.
    Kim C; Chen C; Yu Y
    Cell Chem Biol; 2021 Apr; 28(4):456-462. PubMed ID: 33657415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncoupling of PARP1 trapping and inhibition using selective PARP1 degradation.
    Wang S; Han L; Han J; Li P; Ding Q; Zhang QJ; Liu ZP; Chen C; Yu Y
    Nat Chem Biol; 2019 Dec; 15(12):1223-1231. PubMed ID: 31659317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapamycin-resistant poly (ADP-ribose) polymerase-1 overexpression is a potential therapeutic target in lymphangioleiomyomatosis.
    Sun Y; Gallacchi D; Zhang EY; Reynolds SB; Robinson L; Malinowska IA; Chiou TT; Pereira AM; Li C; Kwiatkowski DJ; Lee PS; Yu JJ
    Am J Respir Cell Mol Biol; 2014 Dec; 51(6):738-49. PubMed ID: 24874429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(ADP-ribose)polymerase (PARP) inhibition and anticancer activity of simmiparib, a new inhibitor undergoing clinical trials.
    Yuan B; Ye N; Song SS; Wang YT; Song Z; Chen HD; Chen CH; Huan XJ; Wang YQ; Su Y; Shen YY; Sun YM; Yang XY; Chen Y; Guo SY; Gan Y; Gao ZW; Chen XY; Ding J; He JX; Zhang A; Miao ZH
    Cancer Lett; 2017 Feb; 386():47-56. PubMed ID: 27847302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery of SHP2-D26 as a First, Potent, and Effective PROTAC Degrader of SHP2 Protein.
    Wang M; Lu J; Wang M; Yang CY; Wang S
    J Med Chem; 2020 Jul; 63(14):7510-7528. PubMed ID: 32437146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-guided discovery of novel potent and efficacious proteolysis targeting chimera (PROTAC) degrader of BRD4.
    Xiang W; Wang Q; Ran K; Ren J; Shi Y; Yu L
    Bioorg Chem; 2021 Oct; 115():105238. PubMed ID: 34390970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioorthogonal small-molecule ligands for PARP1 imaging in living cells.
    Reiner T; Earley S; Turetsky A; Weissleder R
    Chembiochem; 2010 Nov; 11(17):2374-7. PubMed ID: 20967817
    [No Abstract]   [Full Text] [Related]  

  • 29. Design, Synthesis and Activity Evaluation of New Phthalazinone PARP Inhibitors.
    Huang M; Ren J; Wang Y; Chen X; Yang J; Tang T; Yang Z; Li X; Ji M; Cai J
    Chem Pharm Bull (Tokyo); 2021; 69(7):620-629. PubMed ID: 34193711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of BP3 as an efficacious proteolysis targeting chimera (PROTAC) degrader of HSP90 for treating breast cancer.
    Liu Q; Tu G; Hu Y; Jiang Q; Liu J; Lin S; Yu Z; Li G; Wu X; Tang Y; Huang X; Xu J; Liu Y; Wu L
    Eur J Med Chem; 2022 Jan; 228():114013. PubMed ID: 34864330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PARP1: A Promising Target for the Development of PARP1-based Candidates for Anticancer Intervention.
    Zhu X; Ma X; Hu Y
    Curr Med Chem; 2016; 23(17):1756-74. PubMed ID: 25245372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of ARD-2051 as a Potent and Orally Efficacious Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor for the Treatment of Advanced Prostate Cancer.
    Han X; Zhao L; Xiang W; Miao B; Qin C; Wang M; Xu T; McEachern D; Lu J; Wang Y; Metwally H; Yang CY; Kirchhoff PD; Wang L; Matvekas A; Takyi-Williams J; Wen B; Sun D; Ator M; Mckean R; Wang S
    J Med Chem; 2023 Jul; 66(13):8822-8843. PubMed ID: 37382562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MORC2 regulates DNA damage response through a PARP1-dependent pathway.
    Zhang L; Li DQ
    Nucleic Acids Res; 2019 Sep; 47(16):8502-8520. PubMed ID: 31616951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly ADP-ribose polymerase-1 as a potential therapeutic target in Merkel cell carcinoma.
    Ferrarotto R; Cardnell R; Su S; Diao L; Eterovic AK; Prieto V; Morrisson WH; Wang J; Kies MS; Glisson BS; Byers LA; Bell D
    Head Neck; 2018 Aug; 40(8):1676-1684. PubMed ID: 29570891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mortaparib, a novel dual inhibitor of mortalin and PARP1, is a potential drug candidate for ovarian and cervical cancers.
    Putri JF; Bhargava P; Dhanjal JK; Yaguchi T; Sundar D; Kaul SC; Wadhwa R
    J Exp Clin Cancer Res; 2019 Dec; 38(1):499. PubMed ID: 31856867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [PARP1 inhibitors: contemporary attempts at their use in anticancer therapy and future perspective].
    Wiśnik E; Ryksa M; Koter-Michalak M
    Postepy Hig Med Dosw (Online); 2016 Apr; 70():280-94. PubMed ID: 27117104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer.
    Postel-Vinay S; Bajrami I; Friboulet L; Elliott R; Fontebasso Y; Dorvault N; Olaussen KA; André F; Soria JC; Lord CJ; Ashworth A
    Oncogene; 2013 Nov; 32(47):5377-87. PubMed ID: 23934192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting PARP1 in XRCC1-Deficient Sporadic Invasive Breast Cancer or Preinvasive Ductal Carcinoma
    Ali R; Al-Kawaz A; Toss MS; Green AR; Miligy IM; Mesquita KA; Seedhouse C; Mirza S; Band V; Rakha EA; Madhusudan S
    Cancer Res; 2018 Dec; 78(24):6818-6827. PubMed ID: 30297533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rational Design and Synthesis of Novel Dual PROTACs for Simultaneous Degradation of EGFR and PARP.
    Zheng M; Huo J; Gu X; Wang Y; Wu C; Zhang Q; Wang W; Liu Y; Liu Y; Zhou X; Chen L; Zhou Y; Li H
    J Med Chem; 2021 Jun; 64(11):7839-7852. PubMed ID: 34038131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer.
    Brenner JC; Ateeq B; Li Y; Yocum AK; Cao Q; Asangani IA; Patel S; Wang X; Liang H; Yu J; Palanisamy N; Siddiqui J; Yan W; Cao X; Mehra R; Sabolch A; Basrur V; Lonigro RJ; Yang J; Tomlins SA; Maher CA; Elenitoba-Johnson KS; Hussain M; Navone NM; Pienta KJ; Varambally S; Feng FY; Chinnaiyan AM
    Cancer Cell; 2011 May; 19(5):664-78. PubMed ID: 21575865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.