BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32924478)

  • 1. Reaction-Induced Strong Metal-Support Interactions between Metals and Inert Boron Nitride Nanosheets.
    Dong J; Fu Q; Li H; Xiao J; Yang B; Zhang B; Bai Y; Song T; Zhang R; Gao L; Cai J; Zhang H; Liu Z; Bao X
    J Am Chem Soc; 2020 Oct; 142(40):17167-17174. PubMed ID: 32924478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Strong Metal-Support Interactions between Metals and Inert Boron Nitride.
    Song T; Dong J; Li R; Xu X; Hiroaki M; Yang B; Zhang R; Bai Y; Xin H; Lin L; Mu R; Fu Q; Bao X
    J Phys Chem Lett; 2021 May; 12(17):4187-4194. PubMed ID: 33900088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles theoretical study on dry reforming of methane over perfect and boron-vacancy-containing h-BN sheet-supported Ni catalysts.
    Zhang Y; Yao YF; Qiao YY; Wang GC
    Phys Chem Chem Phys; 2021 Jan; 23(1):617-627. PubMed ID: 33331372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing Strong Metal-Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction.
    Jeon OS; Lee H; Lee KS; Paidi VK; Ji Y; Kwon OC; Kim JP; Myung JH; Park SY; Yoo YJ; Lee JG; Lee SY; Shul YG
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12140-12148. PubMed ID: 35238550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoting Dry Reforming of Methane Catalysed by Atomically-Dispersed Ni over Ceria-Upgraded Boron Nitride.
    Li X; Phornphimon M; Zhang X; Deng J; Zhang D
    Chem Asian J; 2022 May; 17(9):e202101428. PubMed ID: 35246955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexagonal Boron Nitride Meeting Metal: A New Opportunity and Territory in Heterogeneous Catalysis.
    Dong J; Gao L; Fu Q
    J Phys Chem Lett; 2021 Oct; 12(39):9608-9619. PubMed ID: 34585925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overturning CO
    Xin H; Lin L; Li R; Li D; Song T; Mu R; Fu Q; Bao X
    J Am Chem Soc; 2022 Mar; 144(11):4874-4882. PubMed ID: 35258951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sinter-Resistant Nanoparticle Catalysts Achieved by 2D Boron Nitride-Based Strong Metal-Support Interactions: A New Twist on an Old Story.
    Chen H; Yang SZ; Yang Z; Lin W; Xu H; Wan Q; Suo X; Wang T; Jiang DE; Fu J; Dai S
    ACS Cent Sci; 2020 Sep; 6(9):1617-1627. PubMed ID: 32999937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coking- and Sintering-Resistant Ni Nanocatalysts Confined by Active BN Edges for Methane Dry Reforming.
    Zhang X; Deng J; Lan T; Shen Y; Qu W; Zhong Q; Zhang D
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25439-25447. PubMed ID: 35604327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Nanostructured Interfaces of Hexagonal Boron Nitride-Based Materials for Enhanced Catalysis.
    Chen H; Jiang DE; Yang Z; Dai S
    Acc Chem Res; 2023 Jan; 56(1):52-65. PubMed ID: 36378327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative-Atmosphere-Induced Strong Metal-Support Interaction and Its Catalytic Application.
    Wu G; Liu Y; Wang J
    Acc Chem Res; 2023 Apr; 56(8):911-923. PubMed ID: 37010390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of light mercaptans over metal (Co, Cu, Fe, Ni) doped hexagonal boron nitride nanosheets: a first-principles study.
    Moghadaszadeh Z; Toosi MR; Zardoost MR
    J Mol Model; 2019 Apr; 25(5):138. PubMed ID: 31037496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective Hexagonal Boron Nitride Nanosheet on Ni(111) and Cu(111): Stability, Electronic Structures, and Potential Applications.
    Gao X; Wang S; Lin S
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24238-47. PubMed ID: 27564007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface Engineering of Earth-Abundant Transition Metals Using Boron Nitride for Selective Electroreduction of CO
    Hu G; Wu Z; Dai S; Jiang DE
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6694-6700. PubMed ID: 29385799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nickel nanocatalyst within a h-BN shell for enhanced hydrogen oxidation reactions.
    Gao L; Wang Y; Li H; Li Q; Ta N; Zhuang L; Fu Q; Bao X
    Chem Sci; 2017 Aug; 8(8):5728-5734. PubMed ID: 28989613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylation of a metal-supported hexagonal boron nitride monolayer by oxygen induced water dissociation.
    Guo Y; Guo W
    Phys Chem Chem Phys; 2015 Jul; 17(25):16428-33. PubMed ID: 26051363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Dispersed Ni Nanoparticles on Anhydrous Calcium Silicate (ACS) Nanosheets for Catalytic Dry Reforming of Methane: Tuning the Activity by Different Ways of Ni Introduction.
    Sheng K; Zeng F; Pang F; Ge J
    Chem Asian J; 2019 Aug; 14(16):2889-2897. PubMed ID: 31290281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO
    Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G
    Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of hexagonal boron nitride by metal atomic vacancy-assisted B-N molecular diffusion.
    Park S; Lee J; Kim HS; Park JB; Lee KH; Han SA; Hwang S; Kim SW; Shin HJ
    ACS Nano; 2015 Jan; 9(1):633-8. PubMed ID: 25485620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.