These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 32924498)
21. Reversible rearrangement of magnetic nanoparticles in solution studied using time-resolved SAXS method. Huang L; Mai J; Zhu Q; Guo Z; Qin S; Yang P; Li X; Shi Y; Wang X; Wang Q; Li N; Xie C; Liu H J Synchrotron Radiat; 2019 Jul; 26(Pt 4):1294-1301. PubMed ID: 31274457 [TBL] [Abstract][Full Text] [Related]
22. Mesocrystals in Biominerals and Colloidal Arrays. Bergström L; Sturm née Rosseeva EV; Salazar-Alvarez G; Cölfen H Acc Chem Res; 2015 May; 48(5):1391-402. PubMed ID: 25938915 [TBL] [Abstract][Full Text] [Related]
23. Magnetic field-induced self-assembly of iron oxide nanocubes. Singh G; Chan H; Udayabhaskararao T; Gelman E; Peddis D; Baskin A; Leitus G; Král P; Klajn R Faraday Discuss; 2015; 181():403-21. PubMed ID: 25920522 [TBL] [Abstract][Full Text] [Related]
24. Controlling Orientational and Translational Order of Iron Oxide Nanocubes by Assembly in Nanofluidic Containers. Agthe M; Høydalsvik K; Mayence A; Karvinen P; Liebi M; Bergström L; Nygård K Langmuir; 2015 Nov; 31(45):12537-43. PubMed ID: 26509355 [TBL] [Abstract][Full Text] [Related]
25. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering. Lu C; Akey AJ; Dahlman CJ; Zhang D; Herman IP J Am Chem Soc; 2012 Nov; 134(45):18732-8. PubMed ID: 23034055 [TBL] [Abstract][Full Text] [Related]
26. Time-Resolved SAXS Study of Polarity- and Surfactant-Controlled Superlattice Transformations of Oleate-Capped Nanocubes During Solvent Removal. Lv ZP; Kapuscinski M; Járvás G; Yu S; Bergström L Small; 2022 Jun; 18(22):e2106768. PubMed ID: 35523733 [TBL] [Abstract][Full Text] [Related]
28. Hybrid magnetic iron oxide nanoparticles with tunable field-directed self-assembly. Malik V; Pal A; Pravaz O; Crassous JJ; Granville S; Grobety B; Hirt AM; Dietsch H; Schurtenberger P Nanoscale; 2017 Oct; 9(38):14405-14413. PubMed ID: 28920118 [TBL] [Abstract][Full Text] [Related]
29. Long-Range Ordering Effects in Magnetic Nanoparticles. Myrovali E; Papadopoulos K; Iglesias I; Spasova M; Farle M; Wiedwald U; Angelakeris M ACS Appl Mater Interfaces; 2021 May; 13(18):21602-21612. PubMed ID: 33929817 [TBL] [Abstract][Full Text] [Related]
30. Controlled formation of calcium-phosphate-based hybrid mesocrystals by organic-inorganic co-assembly. Zhai H; Chu X; Li L; Xu X; Tang R Nanoscale; 2010 Nov; 2(11):2456-62. PubMed ID: 20944837 [TBL] [Abstract][Full Text] [Related]
31. Self-similar mesocrystals form via interface-driven nucleation and assembly. Zhu G; Sushko ML; Loring JS; Legg BA; Song M; Soltis JA; Huang X; Rosso KM; De Yoreo JJ Nature; 2021 Feb; 590(7846):416-422. PubMed ID: 33597761 [TBL] [Abstract][Full Text] [Related]
32. Synthesis of Cu Primc D; Indrizzi L; Tervoort E; Xie F; Niederberger M Nanoscale; 2021 Oct; 13(41):17521-17529. PubMed ID: 34652362 [TBL] [Abstract][Full Text] [Related]
33. DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals. Park SS; Urbach ZJ; Brisbois CA; Parker KA; Partridge BE; Oh T; Dravid VP; Olvera de la Cruz M; Mirkin CA Adv Mater; 2020 Jan; 32(4):e1906626. PubMed ID: 31814172 [TBL] [Abstract][Full Text] [Related]
35. Mesocrystals--ordered nanoparticle superstructures. Song RQ; Cölfen H Adv Mater; 2010 Mar; 22(12):1301-30. PubMed ID: 20437477 [TBL] [Abstract][Full Text] [Related]
36. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Lalatonne Y; Richardi J; Pileni MP Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356 [TBL] [Abstract][Full Text] [Related]
37. Nanoparticle Interactions Guided by Shape-Dependent Hydrophobic Forces. Tan SF; Raj S; Bisht G; Annadata HV; Nijhuis CA; Král P; Mirsaidov U Adv Mater; 2018 Apr; 30(16):e1707077. PubMed ID: 29537111 [TBL] [Abstract][Full Text] [Related]
38. Strategy to control magnetic coercivity by elucidating crystallization pathway-dependent microstructural evolution of magnetite mesocrystals. Park BC; Cho J; Kim MS; Ko MJ; Pan L; Na JY; Kim YK Nat Commun; 2020 Jan; 11(1):298. PubMed ID: 31941908 [TBL] [Abstract][Full Text] [Related]
39. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. Deng S; Tjoa V; Fan HM; Tan HR; Sayle DC; Olivo M; Mhaisalkar S; Wei J; Sow CH J Am Chem Soc; 2012 Mar; 134(10):4905-17. PubMed ID: 22332949 [TBL] [Abstract][Full Text] [Related]
40. Nano- and microstructures of magnetic field-guided maghemite nanoparticles in diblock copolymer films. Yao Y; Metwalli E; Niedermeier MA; Opel M; Lin C; Ning J; Perlich J; Roth SV; Müller-Buschbaum P ACS Appl Mater Interfaces; 2014 Apr; 6(7):5244-54. PubMed ID: 24621173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]