These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 32924906)
41. PCR-ribotyping of Xenorhabdus and Photorhabdus isolates from the Caribbean region in relation to the taxonomy and geographic distribution of their nematode hosts. Fischer-Le Saux M; Mauléon H; Constant P; Brunel B; Boemare N Appl Environ Microbiol; 1998 Nov; 64(11):4246-54. PubMed ID: 9797272 [TBL] [Abstract][Full Text] [Related]
42. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Goodrich-Blair H; Clarke DJ Mol Microbiol; 2007 Apr; 64(2):260-8. PubMed ID: 17493120 [TBL] [Abstract][Full Text] [Related]
43. Biological control of Phlebotomus papatasi larvae by using entomopathogenic nematodes and its symbiotic bacterial toxins. El-Sadawy HA; Ramadan MY; Abdel Megeed KN; Ali HH; El Sattar SA; Elakabawy LM Trop Biomed; 2020 Jun; 37(2):288-302. PubMed ID: 33612799 [TBL] [Abstract][Full Text] [Related]
44. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
45. Insecticidal Effect of Entomopathogenic Nematodes and the Cell-Free Supernatant from Their Symbiotic Bacteria against Vicente-Díez I; Blanco-Pérez R; González-Trujillo MDM; Pou A; Campos-Herrera R Insects; 2021 May; 12(5):. PubMed ID: 34068952 [TBL] [Abstract][Full Text] [Related]
46. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria. Darsouei R; Karimi J; Ghadamyari M; Hosseini M J Parasitol; 2017 Aug; 103(4):349-358. PubMed ID: 28395586 [TBL] [Abstract][Full Text] [Related]
47. Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Nepal. Khatri-Chhetri HB; Waeyenberge L; Manandhar HK; Moens M J Invertebr Pathol; 2010 Jan; 103(1):74-8. PubMed ID: 19836397 [TBL] [Abstract][Full Text] [Related]
48. Culturing and Genetically Manipulating Entomopathogenic Nematodes. Heryanto C; Ratnappan R; O'Halloran DM; Hawdon JM; Eleftherianos I J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435903 [TBL] [Abstract][Full Text] [Related]
49. Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria Xenorhabdus bovienii. Sajnaga E; Kazimierczak W; Skowronek M; Lis M; Skrzypek T; Waśko A Arch Microbiol; 2018 Nov; 200(9):1307-1316. PubMed ID: 29946739 [TBL] [Abstract][Full Text] [Related]
50. STEINERNEMA ADAMSI N. SP. (RHABDITIDA: STEINERNEMATIDAE), A NEW ENTOMOPATHOGENIC NEMATODE FROM THAILAND. Baniya A; Subkrasae C; Ardpairin J; Anesko K; Vitta A; Dillman AR J Parasitol; 2024 Feb; 110(1):22-39. PubMed ID: 38334188 [TBL] [Abstract][Full Text] [Related]
51. First record of native entomopathogenic nematodes from Montana agroecosystems. Sandhi RK; Pothula R; Pothula SK; Adams BJ; Reddy GVP J Nematol; 2020; 52():1-11. PubMed ID: 32628826 [TBL] [Abstract][Full Text] [Related]
52. Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). Maneesakorn P; An R; Daneshvar H; Taylor K; Bai X; Adams BJ; Grewal PS; Chandrapatya A Mol Phylogenet Evol; 2011 May; 59(2):271-80. PubMed ID: 21335093 [TBL] [Abstract][Full Text] [Related]
53. Variation in the susceptibility of Drosophila to different entomopathogenic nematodes. Peña JM; Carrillo MA; Hallem EA Infect Immun; 2015 Mar; 83(3):1130-8. PubMed ID: 25561714 [TBL] [Abstract][Full Text] [Related]
54. The Insect Pathogen Photorhabdus luminescens Protects Plants from Phytopathogenic Fusarium graminearum via Chitin Degradation. Dominelli N; Platz F; Heermann R Appl Environ Microbiol; 2022 Jun; 88(11):e0064522. PubMed ID: 35604230 [TBL] [Abstract][Full Text] [Related]
55. Mutualistic association of Photorhabdus asymbiotica with Japanese heterorhabditid entomopathogenic nematodes. Kuwata R; Yoshiga T; Yoshida M; Kondo E Microbes Infect; 2008 Jun; 10(7):734-41. PubMed ID: 18538616 [TBL] [Abstract][Full Text] [Related]
57. Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. Gulcu B; Hazir S; Kaya HK J Invertebr Pathol; 2012 Jul; 110(3):326-33. PubMed ID: 22446508 [TBL] [Abstract][Full Text] [Related]
58. Natural occurrence of entomopathogenic nematodes (Steinernema and Heterorhabditis) and Julià I; Morton A; Garcia-Del-Pino F J Helminthol; 2023 Oct; 97():e76. PubMed ID: 37855086 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of indigenous entomopathogenic nematodes in Southwest China as potential biocontrol agents against Sun B; Zhang X; Song L; Zheng L; Wei X; Gu X; Cui Y; Hu B; Yoshiga T; Abd-Elgawad MM; Ruan W J Nematol; 2021; 53():. PubMed ID: 34820628 [No Abstract] [Full Text] [Related]
60. Special Issue: Insects, Nematodes, and Their Symbiotic Bacteria. Theopold U; Dziedziech A; Hyrsl P Insects; 2020 Aug; 11(9):. PubMed ID: 32872298 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]