These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32924939)

  • 1. A Low Phase Noise All Cryogenic Microwave Oscillator Based on a Superconductor Resonator.
    Chaudy D; Llopis O; Marcilhac B; Lemaitre Y; Kelly OD; Hode JM; Lesage JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2750-2756. PubMed ID: 32924939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of an ultra low-phase noise sapphire--SiGe HBT oscillator using nonlinear CAD.
    Cibiel G; Régis M; Llopis O; Rennane A; Bary L; Plana R; Kersalé Y; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):33-41. PubMed ID: 14995014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low phase noise operation of microwave oscillator circuits.
    Nallatamby JC; Prigent M; Vaury E; Laloue A; Camiade M; Obregon J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):411-20. PubMed ID: 18238558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.
    Boudot R; Li MD; Giordano V; Rolland N; Rolland PA; Vincent P
    Rev Sci Instrum; 2011 Mar; 82(3):034706. PubMed ID: 21456775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low phase-noise sapphire crystal microwave oscillators: current status.
    Ivanov EN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):263-9. PubMed ID: 19251513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The design and implementation of a 120-MHz Pierce low-phase-noise crystal oscillator.
    Huang X; Wang Y; Fu W; Wang H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1302-6. PubMed ID: 21768015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Power MEMS-Based Pierce Oscillator Using a 61-MHz Capacitive-Gap Disk Resonator.
    Naing TL; Rocheleau TO; Alon E; Nguyen CT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1377-1391. PubMed ID: 31995483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement and analysis of a microwave oscillator stabilized by a sapphire dielectric ring resonator for ultra-low noise.
    Dick GJ; Saunders J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):339-46. PubMed ID: 18285050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Sub-mW 18-MHz MEMS Oscillator Based on a 98-dB
    Bouchami A; Elsayed MY; Nabki F
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31200575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs.
    Saleh K; Chembo YK
    Opt Express; 2016 Oct; 24(22):25043-25056. PubMed ID: 27828444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar resonator and integrated oscillator using magnetostatic waves.
    Kinoshita Y; Kubota S; Takeda S; Nakagoshi A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):457-63. PubMed ID: 18285063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L- and X-Band Dual-Frequency Synthesizer Utilizing Lithium Niobate RF-MEMS and Open-Loop Frequency Dividers.
    Kourani A; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1994-2004. PubMed ID: 33395392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators.
    Savchenkov AA; Rubiola E; Matsko AB; Ilchenko VS; Maleki L
    Opt Express; 2008 Mar; 16(6):4130-44. PubMed ID: 18542510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An X-band, high power dielectric resonator oscillator for future military systems.
    Mizan MA; Sturzebecher D; Higgins T; Paolella A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):483-7. PubMed ID: 18263210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low phase and amplitude noise microwave source for vapor cell atomic clocks.
    Ju B; Yun P; Hao Q; Nie S; Liu G
    Rev Sci Instrum; 2022 Oct; 93(10):104709. PubMed ID: 36319356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators.
    Merrer PH; Saleh K; Llopis O; Berneschi S; Cosi F; Conti GN
    Appl Opt; 2012 Jul; 51(20):4742-8. PubMed ID: 22781250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.
    Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.
    Daugey T; Friedt JM; Martin G; Boudot R
    Rev Sci Instrum; 2015 Nov; 86(11):114703. PubMed ID: 26628155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High sensitivity microwave phase noise analyzer based on a phase locked optoelectronic oscillator.
    Peng H; Xu Y; Guo R; Du H; Chen J; Chen Z
    Opt Express; 2019 Jun; 27(13):18910-18927. PubMed ID: 31252826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New kind of injection-locked oscillator and its corresponding long-term stability control.
    Hong J; Liu A; Wang XH; Yao SX; Li ZL
    Appl Opt; 2015 Sep; 54(27):8187-91. PubMed ID: 26406523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.