These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
721 related articles for article (PubMed ID: 32924975)
1. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
2. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing. Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719 [TBL] [Abstract][Full Text] [Related]
3. Study on Printability Evaluation of Alginate/Silk Fibroin/Collagen Double-Cross-Linked Inks and the Properties of 3D Printed Constructs. Feng H; Song Y; Lian X; Zhang S; Bai J; Gan F; Lei Q; Wei Y; Huang D ACS Biomater Sci Eng; 2024 Oct; 10(10):6581-6593. PubMed ID: 39321210 [TBL] [Abstract][Full Text] [Related]
4. 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin. Mu X; Gonzalez-Obeso C; Xia Z; Sahoo JK; Li G; Cebe P; Zhang YS; Kaplan DL Molecules; 2022 Mar; 27(7):. PubMed ID: 35408547 [TBL] [Abstract][Full Text] [Related]
5. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
6. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
7. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Rajput M; Mondal P; Yadav P; Chatterjee K Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028 [TBL] [Abstract][Full Text] [Related]
9. Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing. Pudkon W; Laomeephol C; Damrongsakkul S; Kanokpanont S; Ratanavaraporn J Molecules; 2021 Jun; 26(13):. PubMed ID: 34202196 [TBL] [Abstract][Full Text] [Related]
10. Dityrosine-inspired photocrosslinking technique for 3D printing of silk fibroin-based composite hydrogel scaffolds. Huang Y; Sun G; Lyu L; Li Y; Li D; Fan Q; Yao J; Shao J Soft Matter; 2022 May; 18(19):3705-3712. PubMed ID: 35502755 [TBL] [Abstract][Full Text] [Related]
11. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]
12. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Kim SH; Yeon YK; Lee JM; Chao JR; Lee YJ; Seo YB; Sultan MT; Lee OJ; Lee JS; Yoon SI; Hong IS; Khang G; Lee SJ; Yoo JJ; Park CH Nat Commun; 2018 Apr; 9(1):1620. PubMed ID: 29693652 [TBL] [Abstract][Full Text] [Related]
13. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. Singh YP; Bandyopadhyay A; Mandal BB ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678 [TBL] [Abstract][Full Text] [Related]
15. Preparation of a novel regenerated silk fibroin-based hydrogel for extrusion bioprinting. Chen N; Zhang X; Lyu J; Zhao G; Gu K; Xia J; Chen Z; Shao Z Soft Matter; 2022 Oct; 18(38):7360-7368. PubMed ID: 36124911 [TBL] [Abstract][Full Text] [Related]
16. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
17. 3D Bioprinting of Self-Standing Silk-Based Bioink. Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585 [TBL] [Abstract][Full Text] [Related]
18. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. Kim SH; Kim DY; Lim TH; Park CH Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090 [TBL] [Abstract][Full Text] [Related]
19. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
20. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype. Floren M; Bonani W; Dharmarajan A; Motta A; Migliaresi C; Tan W Acta Biomater; 2016 Feb; 31():156-166. PubMed ID: 26621695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]