These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32925862)

  • 41. Morphometric Analysis and Linear Measurements of the Scala Tympani and Implications in Cochlear Implant Electrodes.
    Fujiwara RJT; Ishiyama G; Lopez IA; Ishiyama A
    Otol Neurotol; 2023 Jun; 44(5):e343-e349. PubMed ID: 36893208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporal bone characterization and cochlear implant feasibility in the common marmoset (Callithrix jacchus).
    Johnson LA; Della Santina CC; Wang X
    Hear Res; 2012 Aug; 290(1-2):37-44. PubMed ID: 22583919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of human anatomy-based scala tympani models with a hydrophilic coating for cochlear implant insertion experiments.
    Aebischer P; Caversaccio M; Wimmer W
    Hear Res; 2021 May; 404():108205. PubMed ID: 33618163
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Variance of angular insertion depths in free-fitting and perimodiolar cochlear implant electrodes.
    Radeloff A; Mack M; Baghi M; Gstoettner WK; Adunka OF
    Otol Neurotol; 2008 Feb; 29(2):131-6. PubMed ID: 18090204
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuroprotective Effect of Near-Infrared Light in an Animal Model of CI Surgery.
    Strübing I; Gröschel M; Schwitzer S; Ernst A; Fröhlich F; Jiang D; Boyle P; Basta D
    Audiol Neurootol; 2021; 26(2):95-101. PubMed ID: 33238272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Superior Canal Dehiscence Similarly Affects Cochlear Pressures in Temporal Bones and Audiograms in Patients.
    Cheng YS; Raufer S; Guan X; Halpin CF; Lee DJ; Nakajima HH
    Ear Hear; 2020; 41(4):804-810. PubMed ID: 31688316
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An optically-guided cochlear implant sheath for real-time monitoring of electrode insertion into the human cochlea.
    Starovoyt A; Quirk BC; Putzeys T; Kerckhofs G; Nuyts J; Wouters J; McLaughlin RA; Verhaert N
    Sci Rep; 2022 Nov; 12(1):19234. PubMed ID: 36357503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anatomy of the round window and hook region of the cochlea with implications for cochlear implantation and other endocochlear surgical procedures.
    Li PM; Wang H; Northrop C; Merchant SN; Nadol JB
    Otol Neurotol; 2007 Aug; 28(5):641-8. PubMed ID: 17667773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surgical trauma after sequential insertion of intracochlear catheters and electrode arrays (a histologic study).
    Ibrahim HN; Helbig S; Bossard D; Truy E
    Otol Neurotol; 2011 Dec; 32(9):1448-54. PubMed ID: 22072260
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Evaluation of the electrode position by CBCT following cochlear implantation].
    Fan XT; Wang N; Hou LX; Wang Z; Zhang H; Xu AT
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2019 Aug; 54(8):566-570. PubMed ID: 31434368
    [No Abstract]   [Full Text] [Related]  

  • 51. The scala vestibuli for cochlear implantation. An anatomic study.
    Gulya AJ; Steenerson RL
    Arch Otolaryngol Head Neck Surg; 1996 Feb; 122(2):130-2. PubMed ID: 8630205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cochlear implant and inflammation reaction: Safety study of a new steroid-eluting electrode.
    Astolfi L; Simoni E; Giarbini N; Giordano P; Pannella M; Hatzopoulos S; Martini A
    Hear Res; 2016 Jun; 336():44-52. PubMed ID: 27109196
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distribution of Immune Cells Including Macrophages in the Human Cochlea.
    Liu W; Danckwardt-Lillieström N; Schrott-Fischer A; Glueckert R; Rask-Andersen H
    Front Neurol; 2021; 12():781702. PubMed ID: 34880828
    [No Abstract]   [Full Text] [Related]  

  • 54. Intracochlear assessment of electrode position after cochlear implant surgery by means of multislice computer tomography.
    van Wermeskerken GK; Prokop M; van Olphen AF; Albers FW
    Eur Arch Otorhinolaryngol; 2007 Dec; 264(12):1405-7. PubMed ID: 17632730
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Intracochlear electrode position: evaluation after deep insertion using cone beam computed tomography].
    Güldner C; Weiss R; Eivazi B; Bien S; Werner JA; Diogo I
    HNO; 2012 Sep; 60(9):817-22. PubMed ID: 22767189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beyond the phantom: Unroofing the scala vestibuli in a fresh temporal bone as a model for cochlear implant insertion experiments.
    Smetak MR; Riojas KE; Sharma RK; Labadie RF
    J Neurosci Methods; 2022 Dec; 382():109710. PubMed ID: 36207005
    [No Abstract]   [Full Text] [Related]  

  • 57. Does cochleostomy location influence electrode trajectory and intracochlear trauma?
    Zhou L; Friedmann DR; Treaba C; Peng R; Roland JT
    Laryngoscope; 2015 Apr; 125(4):966-71. PubMed ID: 25345671
    [TBL] [Abstract][Full Text] [Related]  

  • 58. First Experience With a New Thin Lateral Wall Electrode in Human Temporal Bones.
    Lenarz T; Avci E; Gazibegovic D; Salcher R
    Otol Neurotol; 2019 Aug; 40(7):872-877. PubMed ID: 31058753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The insertion trajectory in cochlear implantation - comparison between two approaches.
    Shapira Y; Sultan AA; Kronenberg J
    Acta Otolaryngol; 2011 Sep; 131(9):958-61. PubMed ID: 21619439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insertion trauma of a new cochlear implant electrode: evaluated by histology in fresh human temporal bone specimens.
    Du Q; Wang C; He G; Sun Z
    Acta Otolaryngol; 2021 May; 141(5):490-494. PubMed ID: 33784954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.