These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 32925919)
1. NuSeT: A deep learning tool for reliably separating and analyzing crowded cells. Yang L; Ghosh RP; Franklin JM; Chen S; You C; Narayan RR; Melcher ML; Liphardt JT PLoS Comput Biol; 2020 Sep; 16(9):e1008193. PubMed ID: 32925919 [TBL] [Abstract][Full Text] [Related]
2. Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes. Khoshdeli M; Winkelmaier G; Parvin B BMC Bioinformatics; 2018 Aug; 19(1):294. PubMed ID: 30086715 [TBL] [Abstract][Full Text] [Related]
3. Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images. Ali MAS; Misko O; Salumaa SO; Papkov M; Palo K; Fishman D; Parts L SLAS Discov; 2021 Oct; 26(9):1125-1137. PubMed ID: 34167359 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based ultrasound auto-segmentation of the prostate with brachytherapy implanted needles. Hampole P; Harding T; Gillies D; Orlando N; Edirisinghe C; Mendez LC; D'Souza D; Velker V; Correa R; Helou J; Xing S; Fenster A; Hoover DA Med Phys; 2024 Apr; 51(4):2665-2677. PubMed ID: 37888789 [TBL] [Abstract][Full Text] [Related]
5. Object recognition in medical images via anatomy-guided deep learning. Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745 [TBL] [Abstract][Full Text] [Related]
6. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images. Chang YH; Yokota H; Abe K; Tasi MD; Chu SL J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710 [TBL] [Abstract][Full Text] [Related]
7. A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy. Jang J; Wang C; Zhang X; Choi HJ; Pan X; Lin B; Yu Y; Whittle C; Ryan M; Chen Y; Lee K Cell Rep Methods; 2021 Nov; 1(7):. PubMed ID: 34888542 [TBL] [Abstract][Full Text] [Related]
8. Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images. Song J; Xiao L; Lian Z IEEE Trans Image Process; 2018 Dec; 27(12):5759-5774. PubMed ID: 30028701 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional aggregation network of cell nuclei segmentation aiming histopathological diagnosis assistance: A new MA-Net construction. Pu Q; Tian J; Wei D; Shu Q; Sun M; Zhao L PLoS One; 2024; 19(9):e0308326. PubMed ID: 39241001 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images. Caicedo JC; Roth J; Goodman A; Becker T; Karhohs KW; Broisin M; Molnar C; McQuin C; Singh S; Theis FJ; Carpenter AE Cytometry A; 2019 Sep; 95(9):952-965. PubMed ID: 31313519 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation. Kromp F; Fischer L; Bozsaky E; Ambros IM; Dorr W; Beiske K; Ambros PF; Hanbury A; Taschner-Mandl S IEEE Trans Med Imaging; 2021 Jul; 40(7):1934-1949. PubMed ID: 33784615 [TBL] [Abstract][Full Text] [Related]
12. NISNet3D: three-dimensional nuclear synthesis and instance segmentation for fluorescence microscopy images. Wu L; Chen A; Salama P; Winfree S; Dunn KW; Delp EJ Sci Rep; 2023 Jun; 13(1):9533. PubMed ID: 37308499 [TBL] [Abstract][Full Text] [Related]
13. A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting. Alahmari SS; Goldgof D; Hall LO; Mouton PR IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7458-7477. PubMed ID: 36327184 [TBL] [Abstract][Full Text] [Related]
14. DeepProjection: specific and robust projection of curved 2D tissue sheets from 3D microscopy using deep learning. Haertter D; Wang X; Fogerson SM; Ramkumar N; Crawford JM; Poss KD; Di Talia S; Kiehart DP; Schmidt CF Development; 2022 Nov; 149(21):. PubMed ID: 36178108 [TBL] [Abstract][Full Text] [Related]
15. Separating Touching Cells Using Pixel Replicated Elliptical Shape Models. Winter M; Mankowski W; Wait E; De La Hoz EC; Aguinaldo A; Cohen AR IEEE Trans Med Imaging; 2019 Apr; 38(4):883-893. PubMed ID: 30296216 [TBL] [Abstract][Full Text] [Related]
16. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture. Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945 [TBL] [Abstract][Full Text] [Related]
17. Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy. Scherr T; Löffler K; Böhland M; Mikut R PLoS One; 2020; 15(12):e0243219. PubMed ID: 33290432 [TBL] [Abstract][Full Text] [Related]
18. An Effective Deep Learning Framework for Cell Segmentation in Microscopy Images. Lin S; Norouzi N Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3201-3204. PubMed ID: 34891922 [TBL] [Abstract][Full Text] [Related]
19. Multi-Path Dilated Residual Network for Nuclei Segmentation and Detection. Wang EK; Zhang X; Pan L; Cheng C; Dimitrakopoulou-Strauss A; Li Y; Zhe N Cells; 2019 May; 8(5):. PubMed ID: 31126166 [TBL] [Abstract][Full Text] [Related]
20. Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization. Jung C; Kim C IEEE Trans Biomed Eng; 2010 Oct; 57(10):2600-4. PubMed ID: 20656653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]