BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32925919)

  • 1. NuSeT: A deep learning tool for reliably separating and analyzing crowded cells.
    Yang L; Ghosh RP; Franklin JM; Chen S; You C; Narayan RR; Melcher ML; Liphardt JT
    PLoS Comput Biol; 2020 Sep; 16(9):e1008193. PubMed ID: 32925919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes.
    Khoshdeli M; Winkelmaier G; Parvin B
    BMC Bioinformatics; 2018 Aug; 19(1):294. PubMed ID: 30086715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images.
    Ali MAS; Misko O; Salumaa SO; Papkov M; Palo K; Fishman D; Parts L
    SLAS Discov; 2021 Oct; 26(9):1125-1137. PubMed ID: 34167359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Object recognition in medical images via anatomy-guided deep learning.
    Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA
    Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy.
    Jang J; Wang C; Zhang X; Choi HJ; Pan X; Lin B; Yu Y; Whittle C; Ryan M; Chen Y; Lee K
    Cell Rep Methods; 2021 Nov; 1(7):. PubMed ID: 34888542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images.
    Song J; Xiao L; Lian Z
    IEEE Trans Image Process; 2018 Dec; 27(12):5759-5774. PubMed ID: 30028701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images.
    Caicedo JC; Roth J; Goodman A; Becker T; Karhohs KW; Broisin M; Molnar C; McQuin C; Singh S; Theis FJ; Carpenter AE
    Cytometry A; 2019 Sep; 95(9):952-965. PubMed ID: 31313519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation.
    Kromp F; Fischer L; Bozsaky E; Ambros IM; Dorr W; Beiske K; Ambros PF; Hanbury A; Taschner-Mandl S
    IEEE Trans Med Imaging; 2021 Jul; 40(7):1934-1949. PubMed ID: 33784615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NISNet3D: three-dimensional nuclear synthesis and instance segmentation for fluorescence microscopy images.
    Wu L; Chen A; Salama P; Winfree S; Dunn KW; Delp EJ
    Sci Rep; 2023 Jun; 13(1):9533. PubMed ID: 37308499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepProjection: specific and robust projection of curved 2D tissue sheets from 3D microscopy using deep learning.
    Haertter D; Wang X; Fogerson SM; Ramkumar N; Crawford JM; Poss KD; Di Talia S; Kiehart DP; Schmidt CF
    Development; 2022 Nov; 149(21):. PubMed ID: 36178108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separating Touching Cells Using Pixel Replicated Elliptical Shape Models.
    Winter M; Mankowski W; Wait E; De La Hoz EC; Aguinaldo A; Cohen AR
    IEEE Trans Med Imaging; 2019 Apr; 38(4):883-893. PubMed ID: 30296216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Effective Deep Learning Framework for Cell Segmentation in Microscopy Images.
    Lin S; Norouzi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3201-3204. PubMed ID: 34891922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy.
    Scherr T; Löffler K; Böhland M; Mikut R
    PLoS One; 2020; 15(12):e0243219. PubMed ID: 33290432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Path Dilated Residual Network for Nuclei Segmentation and Detection.
    Wang EK; Zhang X; Pan L; Cheng C; Dimitrakopoulou-Strauss A; Li Y; Zhe N
    Cells; 2019 May; 8(5):. PubMed ID: 31126166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization.
    Jung C; Kim C
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2600-4. PubMed ID: 20656653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellpose: a generalist algorithm for cellular segmentation.
    Stringer C; Wang T; Michaelos M; Pachitariu M
    Nat Methods; 2021 Jan; 18(1):100-106. PubMed ID: 33318659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning -- promises for 3D nuclear imaging: a guide for biologists.
    Mougeot G; Dubos T; Chausse F; Péry E; Graumann K; Tatout C; Evans DE; Desset S
    J Cell Sci; 2022 Apr; 135(7):. PubMed ID: 35420128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.