These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 32925954)

  • 1. Identification of QTLs for grain yield and other traits in tropical maize under Striga infestation.
    Badu-Apraku B; Adewale S; Paterne AA; Gedil M; Toyinbo J; Asiedu R
    PLoS One; 2020; 15(9):e0239205. PubMed ID: 32925954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines.
    Adewale SA; Badu-Apraku B; Akinwale RO; Paterne AA; Gedil M; Garcia-Oliveira AL
    BMC Plant Biol; 2020 May; 20(1):203. PubMed ID: 32393176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association analysis of grain yield and Striga hermonthica and S. asiatica resistance in tropical and sub-tropical maize populations.
    Dossa EN; Shimelis H; Shayanowako AIT
    BMC Plant Biol; 2024 Sep; 24(1):871. PubMed ID: 39294608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic dissection of Striga hermonthica (Del.) Benth. resistance via genome-wide association and genomic prediction in tropical maize germplasm.
    Gowda M; Makumbi D; Das B; Nyaga C; Kosgei T; Crossa J; Beyene Y; Montesinos-López OA; Olsen MS; Prasanna BM
    Theor Appl Genet; 2021 Mar; 134(3):941-958. PubMed ID: 33388884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic prediction of the performance of tropical doubled haploid maize lines under artificial Striga hermonthica (Del.) Benth. infestation.
    Kimutai JJC; Makumbi D; Burgueño J; Pérez-Rodríguez P; Crossa J; Gowda M; Menkir A; Pacheco A; Ifie BE; Tongoona P; Danquah EY; Prasanna BM
    G3 (Bethesda); 2024 Oct; 14(10):. PubMed ID: 39129203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association analysis for resistance to Striga hermonthica in diverse tropical maize inbred lines.
    Stanley AE; Menkir A; Ifie B; Paterne AA; Unachukwu NN; Meseka S; Mengesha WA; Bossey B; Kwadwo O; Tongoona PB; Oladejo O; Sneller C; Gedil M
    Sci Rep; 2021 Dec; 11(1):24193. PubMed ID: 34921181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance.
    Badu-Apraku B; Talabi AO; Fakorede MAB; Fasanmade Y; Gedil M; Magorokosho C; Asiedu R
    BMC Plant Biol; 2019 Apr; 19(1):129. PubMed ID: 30953477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping quantitative trait loci and predicting candidate genes for
    Badu-Apraku B; Adewale S; Paterne A; Offornedo Q; Gedil M
    Front Genet; 2023; 14():1012460. PubMed ID: 36713079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic diversity analysis of tropical and sub-tropical maize germplasm for Striga resistance and agronomic traits with SNP markers.
    Dossa EN; Shimelis H; Shayanowako AIT
    PLoS One; 2024; 19(8):e0306263. PubMed ID: 39106250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association studies of Striga resistance in extra-early maturing quality protein maize inbred lines.
    Okunlola G; Badu-Apraku B; Ariyo O; Agre P; Offernedo Q; Ayo-Vaughan M
    G3 (Bethesda); 2023 Feb; 13(2):. PubMed ID: 36073937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative changes in genetic variability and correlations in an early-maturing maize population during recurrent selection.
    Badu-Apraku B; Akinwale RO; Fakorede MA; Oyekunle M; Franco J
    Theor Appl Genet; 2012 Oct; 125(6):1289-301. PubMed ID: 22722392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying suitable tester for evaluating Striga resistant lines using DArTseq markers and agronomic traits.
    Zebire D; Menkir A; Adetimirin V; Mengesha W; Meseka S; Gedil M
    PLoS One; 2021; 16(6):e0253481. PubMed ID: 34143833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining ability of extra-early maturing pro-vitamin A maize (Zea mays L.) inbred lines and performance of derived hybrids under Striga hermonthica infestation and low soil nitrogen.
    Makinde SA; Badu-Apraku B; Ariyo OJ; Porbeni JB
    PLoS One; 2023; 18(2):e0280814. PubMed ID: 36827415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.).
    Lu Q; Liu H; Hong Y; Li H; Liu H; Li X; Wen S; Zhou G; Li S; Chen X; Liang X
    BMC Genomics; 2018 Dec; 19(1):887. PubMed ID: 30526476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing use of U.S. Ex-PVP inbred lines for enhancing agronomic performance of tropical Striga resistant maize inbred lines.
    Maazou AS; Gedil M; Adetimirin VO; Mengesha W; Meseka S; Ilesanmi O; Agre PA; Menkir A
    BMC Plant Biol; 2022 Jun; 22(1):286. PubMed ID: 35681124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and introgression of QTLs implicated in resistance to sorghum downy mildew (Peronosclerospora sorghi (Weston and Uppal) C. G. Shaw) in maize through marker-assisted selection.
    Lohithaswa HC; Jyothi K; Sunil Kumar KR; Puttaramanaik ; Hittalmani S
    J Genet; 2015 Dec; 94(4):741-8. PubMed ID: 26690530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines.
    Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X
    BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping quantitative trait loci for yield-related traits and predicting candidate genes for grain weight in maize.
    Zhao Y; Su C
    Sci Rep; 2019 Nov; 9(1):16112. PubMed ID: 31695075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QTL mapping for resistance to and tolerance for the rice root-knot nematode, Meloidogyne graminicola.
    Galeng-Lawilao J; Kumar A; De Waele D
    BMC Genet; 2018 Aug; 19(1):53. PubMed ID: 30081817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTL mapping for European corn borer resistance ( Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize ( Zea mays L.) germplasm.
    Papst C; Bohn M; Utz HF; Melchinger AE; Klein D; Eder J
    Theor Appl Genet; 2004 May; 108(8):1545-54. PubMed ID: 15014876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.