These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32926101)

  • 1. Swimming Through Parameter Subspaces of a Simple Anguilliform Swimmer.
    Battista NA
    Integr Comp Biol; 2020 Nov; 60(5):1221-1235. PubMed ID: 32926101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diving into a Simple Anguilliform Swimmer's Sensitivity.
    Battista NA
    Integr Comp Biol; 2020 Nov; 60(5):1236-1250. PubMed ID: 33220061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the sensitivity in jellyfish locomotion under variations in scale, frequency, and duty cycle.
    Miles JG; Battista NA
    J Math Biol; 2021 Nov; 83(5):56. PubMed ID: 34731319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disentangling the functional roles of morphology and motion in the swimming of fish.
    Tytell ED; Borazjani I; Sotiropoulos F; Baker TV; Anderson EJ; Lauder GV
    Integr Comp Biol; 2010 Dec; 50(6):1140-54. PubMed ID: 21082068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer.
    Hamlet C; Fauci LJ; Tytell ED
    J Theor Biol; 2015 Nov; 385():119-29. PubMed ID: 26362101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An immersed boundary method for two-phase fluids and gels and the swimming of
    Lee P; Wolgemuth CW
    Phys Fluids (1994); 2016 Jan; 28(1):011901. PubMed ID: 26858520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wall effect on the start maneuver of a jet swimmer.
    Zhu Q
    Bioinspir Biomim; 2023 Mar; 18(3):. PubMed ID: 36889000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free swimming of a squid-inspired axisymmetric system through jet propulsion.
    Bi X; Zhu Q
    Bioinspir Biomim; 2021 Nov; 16(6):. PubMed ID: 34654001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced locomotion, effective diffusion and trapping of undulatory micro-swimmers in heterogeneous environments.
    Kamal A; Keaveny EE
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30487240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual Repeatability of Locomotor Kinematics and Swimming Performance in a Gymnotiform Swimmer.
    Oufiero CE; Kraskura K; Bennington R; Nelson JA
    Physiol Biochem Zool; 2021; 94(1):22-34. PubMed ID: 33275536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experiments and theory of undulatory locomotion in a simple structured medium.
    Majmudar T; Keaveny EE; Zhang J; Shelley MJ
    J R Soc Interface; 2012 Aug; 9(73):1809-23. PubMed ID: 22319110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of a squid-inspired swimmer in free swimming.
    Bi X; Zhu Q
    Bioinspir Biomim; 2019 Dec; 15(1):016005. PubMed ID: 31726438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives.
    Takagi H; Nakashima M; Sengoku Y; Tsunokawa T; Koga D; Narita K; Kudo S; Sanders R; Gonjo T
    Sports Biomech; 2023 Dec; 22(12):1552-1571. PubMed ID: 34423742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hopscotching jellyfish: combining different duty cycle kinematics can lead to enhanced swimming performance.
    Baldwin T; Battista NA
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34584025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upstroke-based acceleration and head stabilization are the norm for the wing-propelled swimming of alcid seabirds.
    Lapsansky AB; Tobalske BW
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31160426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics study of swimmer's hand velocity, orientation, and shape: contributions to hydrodynamics.
    Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ
    Biomed Res Int; 2013; 2013():140487. PubMed ID: 23691493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ground Effect in Anguilliform Swimming.
    Ogunka UE; Daghooghi M; Akbarzadeh AM; Borazjani I
    Biomimetics (Basel); 2020 Mar; 5(1):. PubMed ID: 32138387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.